• Title/Summary/Keyword: medium voltage

Search Result 425, Processing Time 0.026 seconds

A Ripple Rejection Inherited RPWM for VSI Working with Fluctuating DC Link Voltage

  • Jarin, T.;Subburaj, P.;Bright, Shibu J V
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2018-2030
    • /
    • 2015
  • A two stage ac drive configuration consisting of a single-phase line commutated rectifier and a three-phase voltage source inverter (VSI) is very common in low and medium power applications. The deterministic pulse width modulation (PWM) methods like sinusoidal PWM (SPWM) could not be considered as an ideal choice for modern drives since they result mechanical vibration and acoustic noise, and limit the application scope. This is due to the incapability of the deterministic PWM strategies in sprawling the harmonic power. The random PWM (RPWM) approaches could solve this issue by creating continuous harmonic profile instead of discrete clusters of dominant harmonics. Insufficient filtering at dc link results in the amplitude distortion of the input dc voltage to the VSI and has the most significant impact on the spectral errors (difference between theoretical and practical spectra). It is obvious that the sprawling effect of RPWM undoubtedly influenced by input fluctuation and the discrete harmonic clusters may reappear. The influence of dc link fluctuation on harmonics and their spreading effect in the VSI remains invalidated. A case study is done with four different filter capacitor values in this paper and results are compared with the constant dc input operation. This paper also proposes an ingenious RPWM, a ripple dosed sinusoidal reference-random carrier PWM (RDSRRCPWM), which has the innate capacity of suppressing the effect of input fluctuation in the output than the other modern PWM methods. MATLAB based simulation study reveals the fundamental component, total harmonic distortion (THD) and harmonic spread factor (HSF) for various modulation indices. The non-ideal dc link is managed well with the developed RDSRRCPWM applied to the VSI and tested in a proto type VSI using the field programmable gate array (FPGA).

$SF_6$ Emission Characteristics at High Voltage Equipments in use-phase Stage (고압 전력기기에서의 $SF_6$ Gas 사용단계별 배출특성에 관한 연구)

  • Park, Jung-Ju;Cha, Yeun-Haeng
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2199-2201
    • /
    • 2008
  • Sulfur hexafluoride($SF_6$) is a gaseous dielectric used in high voltage electrical equipment such as an insultor or arc quenching medium in the transmission and distribution of electricity. however, $SF_6$ is one of the greenhouse gases(GHG) with a global warming potential that is 23,900 times greater than that of carbon dioxide($CO_2$). for this reason, $SF_6$ emissions in electric equipment shall be controlled to reduce GHG and improve cost-effective use of $SF_6$ for economical benefits. Until recently there has not been any investigation on $SF_6$ emission characteristics and inventory in Korea. To understand emission characteristics during the use-phase, the scope of this study was limited to the following closed pressure system equipment from 10 substations in Korea. This study highlights (1) the investigation of sampling/analysis methodology for $SF_6$ emissions in high voltage equipment, (2) the estimation of $SF_6$ emissions in the use-phase, and (3) the comparison between the emission ratio and the mass-balance applied to inventory study. According to this study, the majority of emissions were related to electric equipment nameplates and the rest of the emissions were related to the handling of $SF_6$ during operations. from this result, emission ratios estimated from this study were similar; GIS was 14% and GCB was 13%, as maintenance process conditions were the same as manual process conditions for both equipment.

Comparative Analysis of PD Characteristics Under SF6, g3 and Dry Air Insulation (SF6, g3 및 Dry Air 절연에서 PD 특성 비교 분석)

  • Shin, Han-sin;Kim, Nam-Hoon;Kim, Sung-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.490-494
    • /
    • 2020
  • Sulphur hexafluoride (SF6) is mostly used as a current-insulating medium in gas-insulated switchgears (GIS), owing to its excellent dielectric strength and arc-extinguishing performance. The global warming potential (GWP) of SF6, however, is 23,900 times that of CO2, and its life time in the atmosphere is 3,200 years. For these reasons, new eco-friendly gases to replace SF6 are required. In this study, the partial discharge (PD) characteristics of green gas for grid (g3) and dry air (N2/O2) were analyzed to compare with those of SF6. A PD electrode system was designed to simulate the protrusion defect in GISs and fabricated for experimentation. To compare the PD characteristics of each gas, the discharge inception voltage (DIV), discharge extinction voltage (DEV), discharge magnitude, discharge pulse number, and phase pattern were analyzed. Results from this study are expected to provide fundamental materials for the design of eco-friendly GISs.

Development of Welding Quality Monitoring Method for TIG Cladding (TIG클래딩 공정에 대한 품질 모니터링기법의 개발)

  • Cho, Sang Myung;Son, Min Su;Park, Jung Hyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.90-95
    • /
    • 2013
  • Pipe inside clad welding is mainly used to the flow pipe of sub-sea or chemical plant. For the inside clad welding to the medium pipe with the diameter of about 12", TIG welding is frequently applied with filler metal. In this case, the clad welding has the very broad weld area over $10m^2$. And, the non-destructive test (NDT) such as ultrasonic test (UT) or radiographic testing (RT) should be conducted on the broad weld area, and it costs very high due to the time-consuming work. Therefore, the present study investigated the variation of arc voltage to develop the in-line quality monitoring system for the pipe inside TIG cladding. The 4 experimental parameters (current, arc length, wire feed position, and shield gas flow rate) varied to observe the change of arc voltage and to establish the model for the monitoring. The arc voltage was decreased when the wire was fed to the backward eccentric position(over 2mm), and the shield gas flow rate was insufficient under 10L/min. In the case of the backward eccentric position over 2mm, the bead appearance was not good and the dilution ratio was increased due to deep penetration. When the shield gas flow rate was lower than 10L/min, the bead surface was oxidized.

Structure and Control of Smart Transformer with Single-Phase Three-Level H-Bridge Cascade Converter for Railway Traction System (Three-Level H-Bridge 컨버터를 이용한 철도차량용 지능형 변압기의 구조 및 제어)

  • Kim, Sungmin;Lee, Seung-Hwan;Kim, Myung-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.617-628
    • /
    • 2016
  • This paper proposes the structure of a smart transformer to improve the performance of the 60Hz main power transformer for rolling stock. The proposed smart transformer is a kind of solid state transformer that consists of semiconductor switching devices and high frequency transformers. This smart transformer would have smaller size than the conventional 60Hz main transformer for rolling stock, making it possible to operate AC electrified track efficiently by power factor control. The proposed structure employs a cascade H-Bridge converter to interface with the high voltage AC single phase grid as the rectifier part. Each H-Bridge converter in the rectifier part is connected by a Dual-Active-Bridge (DAB) converter to generate an isolated low voltage DC output source of the system. Because the AC voltage in the train system is a kind of medium voltage, the number of the modules would be several tens. To control the entire smart transformer, the inner DC voltage of the modules, the AC input current, and the output DC voltage must be controlled instantaneously. In this paper, a control algorithm to operate the proposed structure is suggested and confirmed through computer simulation.

Effect of Short Circuit Time Ratio and Current Control Pattern on Spatter Generation in $CO_2$ Welding ($CO_2$용접의 스패터 발생에 미치는 단락시간비 및 단락전류 파형제어의 영향)

  • 조상명
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.48-53
    • /
    • 2003
  • The object of this study is to examine the effect of short circuit time ratio (SCTR) and current rise delay time (Td) on the spatter generation at low and medium current range in $CO_2$ welding. The spatter was evaluated by the weight generated in the welding of bead-on-plate for 30 seconds (3 times). Td was varied by order of 0, 0.4, 0.8 and 1.2 msec. At each Td, the short circuit time ratio was varied by the output voltage of the welding power source. In the low current range, it was found that the optimum SCTR was 20~25%, and the minimum spatter generation weight was obtained in the case of Td=0.4msec and SCTR=22% even though the remarkable difference was not showed by the application of Td. In the medium current range, it was confirmed that the arc was stable though the SCTR was increased from 20% to 40% by the control of current wave. Spatter generation weight depended on the variation of Td, and the lowest value of spatter generation weight occurred at Td=0.8~1.2msec.

Phorbol Ester-Induced Periodic Contraction in Isolated Rabbit Jugular Vein

  • Ryu, Jae-Cheol;Jung, Dong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.225-232
    • /
    • 1995
  • The present study was conducted to evaluate the effect of phorbol 12,13-dibutyrate (PDBu) on the contraction of rabbit jugular vein in vitro. PDBu concentrations of greater than 10 nM induced a periodic contraction which was composed of rapid contraction, plateau and slow relaxation. The frequency of periodic contraction increased as PDBu concentration increased. The PDBu-induced contraction was inhibited by staurosporine (100 nM), it was not changed by tetrodotoxin $(1\;{\mu}M).$ In $Ca^{2+}$-free medium, PDBu induced a sustaining contraction, but not periodic contraction. Addition of $Ca^{2+}$ to medium evoked periodic contraction which was inhibited by nifedipine, PDBu concentrations of greater than $0.1\;{\mu}M$ increased ^{45}Ca^{2+}$ uptake without changing $^{45}Ca^{2+}$ efflux. Charybdotoxin and apamin, $Ca^{2+}$-activated K^{+}$ channel blockers, did not affect the PDBu-induced periodic contraction, whereas tetraethylammonium (TEA) abolished the periodicity. Pinacidil $(10\;{\mu}M).$, a potassium channel activator, blocked PDBu induced periodic contraction, which was recovered by glybenclamide $(10\;{\mu}M).$. In high potassium solution, PDBu did not produce the periodic contraction. These results suggest that the PDBu-induced periodicity of contraction is modulated by voltage dependent $Ca^{2+}$ channel and ATP-sensitive $K^{+}$ channel.

  • PDF

The Electrode Shape for the Efficient Separation of Cell in Dielectrophoresis-Activated Cell Sorter (유전영동을 이용한 입자분리기의 효율적인 분리를 위한 전극 형태)

  • An, Jae-Min;Chae, Seung-Yeub;Park, Seok-Ho;Kim, Byung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • This paper presents the optimal shape of microelectrode that generates dielectrophoretic(DEP) force to separate particles in homogeneous medium. The principle of the particles sorting is based on the use of the relative strengths of negative DEP (nDEP) and drag forces, as in a general DEP-activated cell sorter (DACS). To numerically calculate the DEP force and drag force, the simulation is implemented in MATLAB 7.0. The properties of particles, which are used in simulation, are similarly selected as those of cells to apply cell separation. The most optimized shape of electrode is selected by numerical simulation according to a variety of electrode shape such as rectangle, trapezoidal, and right-triangle. Through, in addition, parameter study, we found that applied frequency is more significant factor on the separation than various parameters, such as applied voltage and permittivity of medium, that decide on the strength of DEP force.

Surface Discharge Characteristics of Solid Dielectrics in N2/O2 Mixture Gas for Eco-Friendly Insulation Design (친환경 절연설계를 위한 N2/O2 혼합가스 중 고체유전체 종류에 따른 연면방전특성)

  • Lim, Dong-Young;Park, He-Rie;Choi, Eun-Hyeok;Choi, Sang-Tae;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.9-15
    • /
    • 2012
  • In this paper, we deal with a surface discharge that caused an aggravation of the dielectric strength in the $N_2/O_2$ mixture gas, When composit dielectrics were formed from the use of a solid dielectric. It was found from this study that the surface discharge voltage was deeply involved in the mixture ratio of $O_2$, the electrical property of the solid dielectric, kind of the solid dielectric, an electric field at the triple junction and a medium effect. These results expect basic data that will be used to transmission and distribution power system equipment using the $N_2/O_2$ mixture gas.

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.