• Title/Summary/Keyword: medium access control (MAC) protocol

Search Result 253, Processing Time 0.02 seconds

A DCF Throughput Analysis of the Ideal and Fading Channel in the Wireless LAN (무선 LAN에서 이상 및 페이딩 채널 환경의 DCF 처리율 비교 분석)

  • Lee, Yong-Sik;Lee, Ha-Cheol;Lee, Byung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.741-753
    • /
    • 2008
  • This paper explores the throughput performance of CSMA/CA-based DCF protocol over both ideal channels and fading channels with payload size at the MAC layer in the 802.11a wireless LAN. In the ideal channel, there are no errors and at the transmission cycle there is one and only one active station which always has a packet to send and other stations can only accept packets and provide acknowledgements. In the fading channel, bit errors appear in the channel randomly and the number of stations is assumed to be fixed. And each station always has packets for transmission. In other words, we operate in saturation conditions. Up to now conventional research work about DCF throughput analysis of IEEE 802.11 a wireless LAN has been done over the ideal channel, but this paper is done over the Rayleigh/Ricean fading channel. So, the ratio of received average energy per bit-to-noise power spectral density $E_b/N_o$ is set to 25 dB and the ratio of direct-to-diffuse signal power in each sub-channel $\xi$ is set to 6 for combined Rayleigh/Ricean fading channel. In conclusion, it is shown that the saturation throughput is always less than the maximum throughput at all the payload size and the higher the transmission rate be, the higher the decreasing rate of saturation throughput compared to the maximum throughput be.

Design of Communication Board for Communication Network of Nuclear Safety Class Control Equipment (원자력 안전등급 제어기기의 통신망을 위한 통신보드 설계)

  • Lee, Dongil;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.185-191
    • /
    • 2015
  • This paper suggest the safety class communication board in order to design the safety network of the nuclear safety class controller. The reactor protection system use the digitized networks because from analog system to digital system. The communication board shall be provided to pass the required performance and test of the safety class in the digital network used in the nuclear safety class. Communication protocol is composed of physical layer(PHY), data link layer(MAC: Medium Access Control), the application layer in the OSI 7 layer only. The data link layer data package for the cyber security has changed. CRC32 were used for data quality and the using one way communication, not requests and not responses for receiving data, does not affect the nuclear safety system. It has been designed in accordance with requirements, design, verification and procedure for the approving the nuclear safety class. For hardware verification such as electromagnetic test, aging test, inspection, burn-in test, seismic test and environmental test in was performed. FPGA firmware to verify compliance with the life-cycle of IEEE 1074 was performed by the component testing and integration testing.

A Solution for Congestion and Performance Enhancement using Dynamic Packet Bursting in Mobile Ad Hoc Networks (모바일 애드 혹 네트워크에서 패킷 버스팅을 이용한 혼잡 해결 및 성능향상 기법)

  • Kim, Young-Duk;Yang, Yeon-Mo;Lee, Dong-Ha
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.409-414
    • /
    • 2008
  • In mobile ad hoc networks, most of on demand routing protocols such as DSR and AODV do not deal with traffic load during the route discovery procedure. To solve the congestion and achieve load balancing, many protocols have been proposed. However, the existing load balancing schemes has only considered avoiding the congested route in the route discovery procedure or finding an alternative route path during a communication session. To mitigate this problem, we have proposed a new scheme which considers the packet bursting mechanism in congested nodes. The proposed packet bursting scheme, which is originally introduced in IEEE 802.11e QoS specification, is to transmit multiple packets right after channel acquisition. Thus, congested nodes can forward buffered packets promptly and minimize bottleneck situation. Each node begins to transmit packets in normal mode whenever its congested status is dissolved. We also propose two threshold values to define exact overloaded status adaptively; one is interface queue length and the other is buffer occupancy time. Through an experimental simulation study, we have compared and contrasted our protocol with normal on demand routing protocols and showed that the proposed scheme is more efficient and effective especially when network traffic is heavily loaded.