• Title/Summary/Keyword: medical radiation exposure

Search Result 610, Processing Time 0.026 seconds

Power Estimation and Follow-Up Period Evaluation in Korea Radiation Effect and Epidemiology Cohort Study (원전 코호트 연구의 적정 대상규모와 검정력 추정)

  • Cho, In-Seong;Song, Min-Kyo;Choi, Yun-Hee;Li, Zhong-Min;Ahn, Yoon-Ok
    • Journal of Preventive Medicine and Public Health
    • /
    • v.43 no.6
    • /
    • pp.543-548
    • /
    • 2010
  • Objectives: The objective of this study was to calculate sample size and power in an ongoing cohort, Korea radiation effect and epidemiology cohort (KREEC). Method: Sample size calculation was performed using PASS 2002 based on Cox regression and Poisson regression models. Person-year was calculated by using data from '1993-1997 Total cancer incidence by sex and age, Seoul' and Korean statistical informative service. Results: With the assumption of relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, sample size calculation was 405 events based on a Cox regression model. When the relative risk was assumed to be 1.5 then number of events was 170. Based on a Poisson regression model, relative risk=1.3, exposure:non-exposure=1:2 and power=0.8 rendered 385 events. Relative risk of 1.5 resulted in a total of 157 events. We calculated person-years (PY) with event numbers and cancer incidence rate in the nonexposure group. Based on a Cox regression model, with relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, 136 245PY was needed to secure the power. In a Poisson regression model, with relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, person-year needed was 129517PY. A total of 1939 cases were identified in KREEC until December 2007. Conclusions: A retrospective power calculation in an ongoing study might be biased by the data. Prospective power calculation should be carried out based on various assumptions prior to the study.

Radiation Biology in Space; DNA Damage and Biological Effects of Space Radiation

  • Ohnishi, Takeo;Takahashi, Akihisa;Ohnishi, Ken
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.37-40
    • /
    • 2002
  • Astronauts are constantly exposed to space radiation at a low-dose rate during long-tenn stays in space. Therefore, it is important to determine correctly the biological effects of space radiation on human health. Space radiations contain various kinds of different energy particles, especially high linear energy transfer (LET) particles. Therefore, we have to study the relative biological effectiveness (RBE) of space radiation under microgravity environment which may change RBE from a stress for cells. Furthermore, the research about space radiation might give us useful information about birth and evolution of life on the earth. We also can realize the importance of preventing the ozone layer from depletion by use of exposure equipment to sunlight at International Space Station (ISS).

  • PDF

A Study on the Proper Chest Exposure Conditions of Mobile Digital X-ray Unit by Exposure Index (Exposure Index를 이용한 이동형 디지털 X선 장치의 흉부촬영 적정노출조건에 관한 연구)

  • Kim, Jae-In;Lee, Yang-Sub;Jang, Dong-Soo;Jung, Min-Cheol;Bae, Seung-Ho;Lee, Kwan-Sub;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.3
    • /
    • pp.139-144
    • /
    • 2011
  • The purpose of this report is recommending a standard indicator which reflects the radiation exposure that is incident on a detector after every exposure event and that reflects the noise levels present in the image data. The experiment was performed with mobile digital X-ray unit and used a acrylic phantom for exposure index measurement. Exposure modality was kVp, mAs, SID. After every exposure, make a data sheet for characteristic curve of detector response. The equipment performed Mobile digital X-ray unit provide the user with values ralated to the incident exposure(air kerma)to the digital detector. They are showed as a logarithmic function shaped. As a result, DEI means a relative measure of exposure to the detector, as compared to the expected exposure for a particular anatomical view. Radiographic technique is the combination of factors used to exposure an anatomical part to produce a high quality radiography and technique charts used most commonly by radiographers to produce consistently exposure level which patient dose can be kept acceptably low.

  • PDF

Personal Dosimeters Worn by Radiation Workers in Korea: Actual Condition and Consideration of Their Proper Application for Radiation Protection

  • Eunbi Noh;Dalnim Lee;Sunhoo Park;Songwon Seo
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.162-166
    • /
    • 2023
  • Background: Assessment of the radiation doses to which workers are exposed can differ depending on the placement of dosimeters on the body. In addition, it is affected by whether the placement is under or over a shielding apron. This study aimed to evaluate the actual positioning of personal dosimeters on the body, with or without shielding aprons, among radiation workers in Korea. Materials and Methods: We analyzed the survey data, which included demographic characteristics, such as sex, age, occupation, work history, and placement of the personal dosimeter being worn, from a cohort study of Korean radiation workers. We assessed the use of personal dosimeters among workers, stratified by sex, age, working period, starting year of work, and occupation. Results and Discussion: Overall, high compliance (89.1% to 99.0%) with the wearing of dosimeters on the chest was observed regardless of workers' characteristics, such as age, sex, occupation, and work history. However, the placement of dosimeters, either under or over the shielding aprons, was inconsistent. Overall, 40.1% of workers wore dosimeters under their aprons, while the others wore dosimeters over their aprons. This inconsistency indicates that radiation doses are possibly measured differently under the same exposure conditions solely owing to variations in the placement of worn dosimeters. Conclusion: Although a lack of uniformity in dosimeter placement when wearing a shielding apron may not cause serious harm in radiation dose management for workers, the development of detailed guidelines for dosimeter placement may improve the accuracy of dose assessment.

Measurement of the Spatial Scattering Dose by Opening, Closing Door and Installing Shielding : A Study on the Reduction of Exposure Dose in Radiography (문 개폐 여부와 차폐체 설치 유무에 따른 공간산란선량 측정 : X선 촬영 시 피폭선량 감소방안에 대한 연구)

  • Yoon, Hong-Joo;Lee, Yong-Ki;Lee, In-Ja
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.477-482
    • /
    • 2019
  • Recently, due to the increased use of medical radiation, the radiation exposure of radiation workers should be considered as well as medical exposure of patients. And it is recommended to close the door during radiography. however, In this study, when the door was inevitably opened for radiography, the proposed method was to install the shield as a method of reducing the exposure dose. And its efficiency was analyzed. In simple chest radiography, the measurement point was changed according to the measurement location. Dose rate were measured 10 times for each condition using a dosimeter. And the average value was derived. Using this, the change of dose according to the opening and closing of the door and the installation of the shield was analyzed. Using this, we compared and analyzed the dose change according to the door opening and closing and the installation of the shield, and significance was verified through the SPSS ver. 24. Depending on whether the door was opened or closed, 11,215.35%, 159.0%, 101.9% increased in front of the door in the consol room, behind the wall and behind the lead glass. Depending on the installing of the shield, the 49.2%, 29.6%, 19.9%, 30.6% decrease in front of the door in the examination and consol room, behind the wall and lead glass. In addition, statistical analysis was showed that there were significant differences in both the results according to whether the door was opened or closed and shielding(p<.05). Close the door during radiography. However, when the door should be opened, it was confirmed that the dose rate were reduced by installing the shield. Therefore, to optimize radiation protection, it is recommended to install shields when opening the door.

Scattering Measurement of Syringe Shield Used in PET/CT (PET/CT실에서 사용되는 주사기 차폐체의 산란선 측정)

  • Jang, Dong-Gun;Park, Cheol-Woo;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.375-382
    • /
    • 2020
  • PET/CT is a medical equipment that detects 0.511 MeV of gamma rays. The radiation workers are inevitably exposed to ionizing radiation in the process of handling the isotope. Accordingly, PET/CT workers use syringe shields made of lead and tungsten to protect their hands. However, lead and tungsten are known to generate very high scattering particles by interacting with gamma rays. Therefore, in this study, we tried to find out the effect on the scattering particles emitted from the syringe shield. In the experiment, first, the exposure dose to the hand (Rod phantom) was evaluated according to the metal material (lead, tungsten, iron, stainless steel) using Monte Carlo simulation. The exposure dose was compared according to whether or not plastic is attached. Second, the exposure dose of scattering particles was measured using a dosimeter and lead. As a result of the experiment, the shielding rate of plastics using the Monte Carlo simulation showed the largest difference in dose of about 40 % in lead, and the lowest in iron, about 15 %. As a result of the dosimeter test, when the plastic tape was wound on lead, it was found that the reduction rate was about 15 %, 28 %, and 39 % depending on the thickness. Based on the above results, it was found that 0.511 MeV of gamma ray interacts with the shielding tool to emit scattered rays and has a very large effect on radiation exposure. However, it was considered that the scattering particles could be sufficiently removed with plastics with a low atomic number. From now on, when using high-energy radiation, the shielding tool and the skin should not be in direct contact, and should be covered with a material with a low atomic number.

Evaluation of Caregivers' Exposed Dose and Patients' External Dose Rate for Radioactive Iodine (I-131) Therapy Administration in Isolated Ward (방사성요오드(I-131) 격리병실 치료 관리를 위한 환자의 체외방사선량률과 상주 보호자의 피폭선량평가)

  • Kang, Seok-Jin;Lee, Doo-Hyeon;So, Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.347-353
    • /
    • 2022
  • In this study, the radiation dose rate was measured by time and distance and evaluated whether radiation dose rate was suitable for domestic and international discharge criteria. In addition, the radiation dose emitted from the patient was measured with a glass dosimeter to evaluate the exposure dose if the caregiver stays in the isolated ward by placing a humanoid phantom instead of the caregiver at a distance of 1 m from the patient, on the second day of treatment. After 23 hours of isolation, the radiation dose rates at a distance of 1 m were 20.54 ± 6.21 µSv/h at 2.96 GBq administration and 27.94 ± 12.33 µSv/h at 3.70 GBq administration. The radiation dose rates at a distance of 1 m were 25.90 ± 2.21 µSv/h when 2.96 GBq was administered and 34.22 ± 10.06 µSv/h when 3.70 GBq was administered after 18 hours of isolation. However, if the isolation period is short may cause unnecessary radiation exposure to the third person. The reading of the attached dosimeter from the morning of the second day of treatment until removal was 0.01 to 0.95 mSv, which is a surface dose determined by the International Commission on Radiation Units and Measurements. And the depth dose was 0.01 to 0.99 mSv. On the second day of treatment, even if the patient caregivers stayed in the isolation ward, the exposure dose of the patient family did not exceed the effective dose limit of 5 mSv recommended by the ICRP and NCRP.

A Study to Compare the Radiation Absorbed Dose of the C-arm Fluoroscopic Modes

  • Cho, Jae-Hun;Kim, Jae-Yun;Kang, Joo-Eun;Park, Pyong-Eun;Kim, Jae-Hun;Lim, Jeong-Ae;Kim, Hae-Kyoung;Woo, Nam-Sik
    • The Korean Journal of Pain
    • /
    • v.24 no.4
    • /
    • pp.199-204
    • /
    • 2011
  • Background: Although many clinicians know about the reducing effects of the pulsed and low-dose modes for fluoroscopic radiation when performing interventional procedures, few studies have quantified the reduction of radiation-absorbed doses (RADs). The aim of this study is to compare how much the RADs from a fluoroscopy are reduced according to the C-arm fluoroscopic modes used. Methods: We measured the RADs in the C-arm fluoroscopic modes including 'conventional mode', 'pulsed mode', 'low-dose mode', and 'pulsed + low-dose mode'. Clinical imaging conditions were simulated using a lead apron instead of a patient. According to each mode, one experimenter radiographed the lead apron, which was on the table, consecutively 5 times on the AP views. We regarded this as one set and a total of 10 sets were done according to each mode. Cumulative exposure time, RADs, peak X-ray energy, and current, which were viewed on the monitor, were recorded. Results: Pulsed, low-dose, and pulsed + low-dose modes showed significantly decreased RADs by 32%, 57%, and 83% compared to the conventional mode. The mean cumulative exposure time was significantly lower in the pulsed and pulsed + low-dose modes than in the conventional mode. All modes had pretty much the same peak X-ray energy. The mean current was significantly lower in the low-dose and pulsed + low-dose modes than in the conventional mode. Conclusions: The use of the pulsed and low-dose modes together significantly reduced the RADs compared to the conventional mode. Therefore, the proper use of the fluoroscopy and its C-arm modes will reduce the radiation exposure of patients and clinicians.

Verification of Secondary Electron Generated by Head Screw in Gamma Knife Using Monte Carlo N-Particle Simulation

  • Kim, Heesoo;Lee, Jeong-Woo
    • Progress in Medical Physics
    • /
    • v.31 no.2
    • /
    • pp.29-34
    • /
    • 2020
  • Purpose: The interaction of various substances inserted into the human body and radiation can confirm the radiation enhancement effect. A Leksell frame inserted into the human body for gamma knife treatment will cause not only pain and inconvenience to the patient, but also additional exposure to the patient's normal tissues. In this study, we attempt to confirm the additional exposure caused by the interaction of the Leksell frame and thermoplastic mask, and 60Co used for gamma knife treatment. Methods: A 60Co energy of 1.17, 1.33 MeV is applied using Monte Carlo simulation, and fixation screws and thermoplastic mask are fabricated using aluminum and titanium alloy, and Carbon compounds. Results: Results show a dose enhancement of up to 396.27% higher compared with that without a Leksell frame and up to 391.25% in thermoplastic mask. Conclusions: Hence, appropriate treatment methods and materials must be used to reduce additional exposure to normal tissues.