• Title/Summary/Keyword: medical intelligence system

Search Result 186, Processing Time 0.025 seconds

Frequentist and Bayesian Learning Approaches to Artificial Intelligence

  • Jun, Sunghae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.111-118
    • /
    • 2016
  • Artificial intelligence (AI) is making computer systems intelligent to do right thing. The AI is used today in a variety of fields, such as journalism, medical, industry as well as entertainment. The impact of AI is becoming larger day after day. In general, the AI system has to lead the optimal decision under uncertainty. But it is difficult for the AI system can derive the best conclusion. In addition, we have a trouble to represent the intelligent capacity of AI in numeric values. Statistics has the ability to quantify the uncertainty by two approaches of frequentist and Bayesian. So in this paper, we propose a methodology of the connection between statistics and AI efficiently. We compute a fixed value for estimating the population parameter using the frequentist learning. Also we find a probability distribution to estimate the parameter of conceptual population using Bayesian learning. To show how our proposed research could be applied to practical domain, we collect the patent big data related to Apple company, and we make the AI more intelligent to understand Apple's technology.

Construction of Artificial Intelligence Training Platform for Multi-Center Clinical Research (다기관 임상연구를 위한 인공지능 학습 플랫폼 구축)

  • Lee, Chung-Sub;Kim, Ji-Eon;No, Si-Hyeong;Kim, Tae-Hoon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.239-246
    • /
    • 2020
  • In the medical field where artificial intelligence technology is introduced, research related to clinical decision support system(CDSS) in relation to diagnosis and prediction is actively being conducted. In particular, medical imaging-based disease diagnosis area applied AI technologies at various products. However, medical imaging data consists of inconsistent data, and it is a reality that it takes considerable time to prepare and use it for research. This paper describes a one-stop AI learning platform for converting to medical image standard R_CDM(Radiology Common Data Model) and supporting AI algorithm development research based on the dataset. To this, the focus is on linking with the existing CDM(common data model) and model the system, including the schema of the medical imaging standard model and report information for multi-center research based on DICOM(Digital Imaging and Communications in Medicine) tag information. And also, we show the execution results based on generated datasets through the AI learning platform. As a proposed platform, it is expected to be used for various image-based artificial intelligence researches.

Development of Voice Guide Service for Pharmaceutical Information based on Ontology (온톨로지 기반의 의약정보 음성 안내 서비스 개발)

  • Lee, Kyung-Min;Quan, Zhixuan
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.2
    • /
    • pp.1-14
    • /
    • 2017
  • This research proposes a method to provide visually impaired persons with better medical services and to mitigate their difficulties in taking medicines in their daily lives. Normally, pharmaceutical information are distributed in a form of printed materials, but it is not accessible by those who are visually impaired. Since persons who are visually impaired by accidents or diseases are required to take more types of medicines compared to other handicapped persons, and thus it is an important matter to let them have appropriate medicines at the right time. Although there are several web sites which are run by the Ministry of Health and Welfare providing pharmaceutic information, the information on those web sites are duplicated and some of the menus are similar, and thus giving users difficulties and discomfort in finding appropriate pharmaceutical information. Since ontology can define and describe the resource in an information system more clearly, in this research, an ontology consists of pharmaceutical information and knowledge on medicines is constructed to give patients more precise information more efficiently. Also, a service in which users can have voice guidance on pharmaceutical information retrieve from the ontology-based information system by contacting RFID sticker on the medicine to the reader.

The Influence of New Service Means on Customer's Willingness to Buy under the Background of Artificial Intelligence Take the Marketing method of AI medical beauty APP as an example

  • Li, Xiao-Pei;Liu, Zi-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.173-182
    • /
    • 2020
  • The purpose of this paper is to study the influence of new service methods of "artificial intelligence (AI) + medical cosmetology", a new service means, on customers' purchase intentions. To AI medical beauty APP sales as an empirical study. This paper designed Likert seven scale to investigate, using SPSS 24.0 statistical analysis software and AMOS24.0 structural equation software to analyze the survey data. The analysis method uses reliability analysis, validity analysis, and construct equation model analysis. Through empirical research, the following results can be found, 1. The system quality of AI medical beauty app will have a positive impact on perceived usefulness and perceived ease of use. 2. The information quality of AI medical beauty app will have a positive impact on perceived ease of use and perceived usefulness. 3. The service quality of AI medical beauty app will have a positive impact on perceived ease of use and perceived usefulness 4. Consumers' perceived ease of use has a positive impact on perceived usefulness and purchase intention. 5. The usefulness of consumers' notification has a positive effect on purchase intention.

A Study on the Liver and Tumor Segmentation and Hologram Visualization of CT Images Using Deep Learning (딥러닝을 이용한 CT 영상의 간과 종양 분할과 홀로그램 시각화 기법 연구)

  • Kim, Dae Jin;Kim, Young Jae;Jeon, Youngbae;Hwang, Tae-sik;Choi, Seok Won;Baek, Jeong-Heum;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.757-768
    • /
    • 2022
  • In this paper, we proposed a system that visualizes a hologram device in 3D by utilizing the CT image segmentation function based on artificial intelligence deep learning. The input axial CT medical image is converted into Sagittal and Coronal, and the input image and the converted image are divided into 3D volumes using ResUNet, a deep learning model. In addition, the volume is created by segmenting the tumor region in the segmented liver image. Each result is integrated into one 3D volume, displayed in a medical image viewer, and converted into a video. When the converted video is transmitted to the hologram device and output from the device, a 3D image with a sense of space can be checked. As for the performance of the deep learning model, in Axial, the basic input image, DSC showed 95.0% performance in liver region segmentation and 67.5% in liver tumor region segmentation. If the system is applied to a real-world care environment, additional physical contact is not required, making it safer for patients to explain changes before and after surgery more easily. In addition, it will provide medical staff with information on liver and liver tumors necessary for treatment or surgery in a three-dimensional manner, and help patients manage them after surgery by comparing and observing the liver before and after liver resection.

Development of medical bed system equipped with body pressure sensors (체압센서를 장착한 의료용 침대 시스템의 개발)

  • Seon, Minju;Lee, Youngdae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.646-653
    • /
    • 2021
  • The medical bed developed in this study consists of N keys and each is driven vertically by an actuator. Since M sensors are mounted on each keyboard to measure body pressure, the resolution of the body pressure map is determined by the MN. A sensor controller is mounted on each keyboard, and the body pressure values measured from M sensors are transmitted to the main controller through a serial communication network such as CAN (Car Area Network). Each keyboard is equipped with a servo driver that drives a motor, and it is connected to the main controller via CAN to control the height of the keyboard according to the displacement value indicated by the main controller. In addition, the maximum body pressure value and body pressure ratio applied to each part of the keyboard are calculated and used as the basic data for controlling bed comfort by artificial intelligence. As a result, the proposed system can be a foundation that can be used for the control of body comfort and pressure sore prevention by artificial intelligence to be developed in the future.

A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model (지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로)

  • Kim, Yechan;Choi, Kwangeun;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.217-242
    • /
    • 2022
  • With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.

Panic Disorder Intelligent Health System based on IoT and Context-aware

  • Huan, Meng;Kang, Yun-Jeong;Lee, Sang-won;Choi, Dong-Oun
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.21-30
    • /
    • 2021
  • With the rapid development of artificial intelligence and big data, a lot of medical data is effectively used, and the diagnosis and analysis of diseases has entered the era of intelligence. With the increasing public health awareness, ordinary citizens have also put forward new demands for panic disorder health services. Specifically, people hope to predict the risk of panic disorder as soon as possible and grasp their own condition without leaving home. Against this backdrop, the smart health industry comes into being. In the Internet age, a lot of panic disorder health data has been accumulated, such as diagnostic records, medical record information and electronic files. At the same time, various health monitoring devices emerge one after another, enabling the collection and storage of personal daily health information at any time. How to use the above data to provide people with convenient panic disorder self-assessment services and reduce the incidence of panic disorder in China has become an urgent problem to be solved. In order to solve this problem, this research applies the context awareness to the automatic diagnosis of human diseases. While helping patients find diseases early and get treatment timely, it can effectively assist doctors in making correct diagnosis of diseases and reduce the probability of misdiagnosis and missed diagnosis.

Development of Predictive Model for Length of Stay(LOS) in Acute Stroke Patients using Artificial Intelligence (인공지능을 이용한 급성 뇌졸중 환자의 재원일수 예측모형 개발)

  • Choi, Byung Kwan;Ham, Seung Woo;Kim, Chok Hwan;Seo, Jung Sook;Park, Myung Hwa;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.16 no.1
    • /
    • pp.231-242
    • /
    • 2018
  • The efficient management of the Length of Stay(LOS) is important in hospital. It is import to reduce medical cost for patients and increase profitability for hospitals. In order to efficiently manage LOS, it is necessary to develop an artificial intelligence-based prediction model that supports hospitals in benchmarking and reduction ways of LOS. In order to develop a predictive model of LOS for acute stroke patients, acute stroke patients were extracted from 2013 and 2014 discharge injury patient data. The data for analysis was classified as 60% for training and 40% for evaluation. In the model development, we used traditional regression technique such as multiple regression analysis method, artificial intelligence technique such as interactive decision tree, neural network technique, and ensemble technique which integrate all. Model evaluation used Root ASE (Absolute error) index. They were 23.7 by multiple regression, 23.7 by interactive decision tree, 22.7 by neural network and 22.7 by esemble technique. As a result of model evaluation, neural network technique which is artificial intelligence technique was found to be superior. Through this, the utility of artificial intelligence has been proved in the development of the prediction LOS model. In the future, it is necessary to continue research on how to utilize artificial intelligence techniques more effectively in the development of LOS prediction model.

Fully Automatic Coronary Calcium Score Software Empowered by Artificial Intelligence Technology: Validation Study Using Three CT Cohorts

  • June-Goo Lee;HeeSoo Kim;Heejun Kang;Hyun Jung Koo;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1764-1776
    • /
    • 2021
  • Objective: This study aimed to validate a deep learning-based fully automatic calcium scoring (coronary artery calcium [CAC]_auto) system using previously published cardiac computed tomography (CT) cohort data with the manually segmented coronary calcium scoring (CAC_hand) system as the reference standard. Materials and Methods: We developed the CAC_auto system using 100 co-registered, non-enhanced and contrast-enhanced CT scans. For the validation of the CAC_auto system, three previously published CT cohorts (n = 2985) were chosen to represent different clinical scenarios (i.e., 2647 asymptomatic, 220 symptomatic, 118 valve disease) and four CT models. The performance of the CAC_auto system in detecting coronary calcium was determined. The reliability of the system in measuring the Agatston score as compared with CAC_hand was also evaluated per vessel and per patient using intraclass correlation coefficients (ICCs) and Bland-Altman analysis. The agreement between CAC_auto and CAC_hand based on the cardiovascular risk stratification categories (Agatston score: 0, 1-10, 11-100, 101-400, > 400) was evaluated. Results: In 2985 patients, 6218 coronary calcium lesions were identified using CAC_hand. The per-lesion sensitivity and false-positive rate of the CAC_auto system in detecting coronary calcium were 93.3% (5800 of 6218) and 0.11 false-positive lesions per patient, respectively. The CAC_auto system, in measuring the Agatston score, yielded ICCs of 0.99 for all the vessels (left main 0.91, left anterior descending 0.99, left circumflex 0.96, right coronary 0.99). The limits of agreement between CAC_auto and CAC_hand were 1.6 ± 52.2. The linearly weighted kappa value for the Agatston score categorization was 0.94. The main causes of false-positive results were image noise (29.1%, 97/333 lesions), aortic wall calcification (25.5%, 85/333 lesions), and pericardial calcification (24.3%, 81/333 lesions). Conclusion: The atlas-based CAC_auto empowered by deep learning provided accurate calcium score measurement as compared with manual method and risk category classification, which could potentially streamline CAC imaging workflows.