• Title/Summary/Keyword: medical intelligence system

Search Result 186, Processing Time 0.024 seconds

Crew Resource Management in Industry 4.0: Focusing on Human-Autonomy Teaming (4차 산업혁명 시대의 CRM: 인간과 자율 시스템의 협업 관점에서)

  • Yun, Sunny;Woo, Simon
    • Korean journal of aerospace and environmental medicine
    • /
    • v.31 no.2
    • /
    • pp.33-37
    • /
    • 2021
  • In the era of the 4th industrial revolution, the aviation industry is also growing remarkably with the development of artificial intelligence and networks, so it is necessary to study a new concept of crew resource management (CRM), which is required in the process of operating state-of-the-art equipment. The automation system, which has been treated only as a tool, is changing its role as a decision-making agent with the development of artificial intelligence, and it is necessary to set clear standards for the role and responsibility in the safety-critical field. We present a new perspective on the automation system in the CRM program through the understanding of the autonomous system. In the future, autonomous system will develop as an agent for human pilots to cooperate, and accordingly, changes in role division and reorganization of regulations are required.

Hospital System Model for Personalized Medical Service (개인 맞춤형 의료서비스를 위한 병원시스템 모델)

  • Ahn, Yoon-Ae;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.77-84
    • /
    • 2017
  • With the entry into the aging society, we are increasingly interested in wellness, and personalized medical services through artificial intelligence are expanding. In order to provide personalized medical services, it is difficult to provide accurate medical analysis services only with the existing hospital system components PM / PA, OCS, EMR, PACS, and LIS. Therefore, it is necessary to present the hospital system model and the construction plan suitable for personalized medical service. Currently, some medical cloud services and artificial intelligence diagnosis services using Watson are being introduced in domestic. However, there are not many examples of systematic hospital system construction. Therefore, this paper proposes a hospital system model suitable for personalized medical service. To do this, we design a model that integrates medical big data construction and AI medical analysis system into the existing hospital system components, and suggest development plan of each module. The proposed model is meaningful as a basic research that provides guidelines for the construction of new hospital system in the future.

Medical Image Analysis Using Artificial Intelligence

  • Yoon, Hyun Jin;Jeong, Young Jin;Kang, Hyun;Jeong, Ji Eun;Kang, Do-Young
    • Progress in Medical Physics
    • /
    • v.30 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • Purpose: Automated analytical systems have begun to emerge as a database system that enables the scanning of medical images to be performed on computers and the construction of big data. Deep-learning artificial intelligence (AI) architectures have been developed and applied to medical images, making high-precision diagnosis possible. Materials and Methods: For diagnosis, the medical images need to be labeled and standardized. After pre-processing the data and entering them into the deep-learning architecture, the final diagnosis results can be obtained quickly and accurately. To solve the problem of overfitting because of an insufficient amount of labeled data, data augmentation is performed through rotation, using left and right flips to artificially increase the amount of data. Because various deep-learning architectures have been developed and publicized over the past few years, the results of the diagnosis can be obtained by entering a medical image. Results: Classification and regression are performed by a supervised machine-learning method and clustering and generation are performed by an unsupervised machine-learning method. When the convolutional neural network (CNN) method is applied to the deep-learning layer, feature extraction can be used to classify diseases very efficiently and thus to diagnose various diseases. Conclusions: AI, using a deep-learning architecture, has expertise in medical image analysis of the nerves, retina, lungs, digital pathology, breast, heart, abdomen, and musculo-skeletal system.

Design and Implementation of a Mobile-based Sarcopenia Prediction and Monitoring System (모바일 기반의 '근감소증' 예측 및 모니터링 시스템 설계 및 구현)

  • Kang, Hyeonmin;Park, Chaieun;Ju, Minina;Seo, Seokkyo;Jeon, Justin Y.;Kim, Jinwoo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.510-518
    • /
    • 2022
  • This paper confirmed the technical reliability of mobile-based sarcopenia prediction and monitoring system. In implementing the developed system, we designed using only sensors built into a smartphone without a separate external device. The prediction system predicts the possibility of sarcopenia without visiting a hospital by performing the SARC-F survey, the 5-time chair stand test, and the rapid tapping test. The Monitoring system tracks and analyzes the average walking speed in daily life to quickly detect the risk of sarcopenia. Through this, it is possible to rapid detection of undiagnosed risk of undiagnosed sarcopenia and initiate appropriate medical treatment. Through prediction and monitoring system, the user may predict and manage sarcopenia, and the developed system can have a positive effect on reducing medical demand and reducing medical costs. In addition, collected data is useful for the patient-doctor communication. Furthermore, the collected data can be used for learning data of artificial intelligence, contributing to medical artificial intelligence and e-health industry.

A Development of Healthcare Monitoring System Based on Internet of Things Effective

  • KIM, Song-Eun;MUN, Ji-Hui;KIM, Kyoung-Sook;KANG, Min-Soo
    • Korean Journal of Artificial Intelligence
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The Recently there has been a growing interest in health care due to the COVID-19 situation. In this paper, we intend to develop a healthcare monitoring system to provide users with smart healthcare systems in line with the healthcare 3.0 era. The system consists of a wireless network between various sensors, Android smartphones, and OLEDs using Bluetooth, and through this, a health care monitoring system capable of collecting user's biometric information and managing health by receiving data values of sensors connected to Arduino. In conclusion, the user's BPM value was calculated using the heart rate sensor, and the exercise intensity can be adjusted through this. In addition, a step derivation algorithm is implemented using an acceleration sensor, and calorie consumption can be measured using the step and weight values. As such, the heart rate, step count, calorie consumption data can be transmitted to a smartphone application through a Bluetooth module and output, and can be output to an OLED for users who are not easy to access the smartphone. This healthcare monitoring system can be applied to various groups and technologies.

Suggestions for the Study of Acupoint Indications in the Era of Artificial Intelligence (인공지능시대의 경혈 주치 연구를 위한 제언)

  • Chae, Youn Byoung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.5
    • /
    • pp.132-138
    • /
    • 2021
  • Artificial intelligence technology sheds light on new ways of innovating acupuncture research. As acupoint selection is specific to target diseases, each acupoint is generally believed to have a specific indication. However, the specificity of acupoint selection may be not always same with the specificity of acupoint indication. In this review, we propose that the specificity of acupoint indication can be inferred from clinical data using reverse inference. Using forward inference, the prescribed acupoints for each disease can be quantified for the specificity of acupoint selection. Using reverse inference, targeted diseases for each acupoint can be quantified for the specificity of acupoint indication. It is noteworthy that the selection of an acupoint for a particular disease does not imply the acupoint has specific indications for that disease. Electronic medical record includes various symptoms and chosen acupoint combinations. Data mining approach can be useful to reveal the complex relationships between diseases and acupoints from clinical data. Combining the clinical information and the bodily sensation map, the spatial patterns of acupoint indication can be further estimated. Interoperable medical data should be collected for medical knowledge discovery and clinical decision support system. In the era of artificial intelligence, machine learning can reveal the associations between diseases and prescribed acupoints from large scale clinical data warehouse.

Intelligence Type Electronic Medical Examination Chart and Data Treatment of Cyber Doctor to Interconnect ASP and SQL (ASP와 SQL을 연동한 사이버닥터의 지능형 전자진료차트와 데이터처리)

  • Kim Seok-Soo
    • Journal of Digital Contents Society
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2003
  • This paper presents the content regarding electronic medical examination chart and data treatment for efficient medical examination and prompt treatment by realizing mutual conversation type remote medical examination system among 3 parties(patient, doctor, pharmacist) on internet base. This is an intelligence type remote medical examination system for both on-line and off-line mode to transcend time and space on the web being participated by anybody, which is cheap type to solve problems in existing remote medical examination system such as high price based on hardware, incompatibility, and so on. By interconnecting ASP and SQL on IIS 4.0 web server, database enables system integration for efficient data processing, on-line consultation between patient and doctor, medical examination on off-line, transmission of medical prescription to pharmacist designated by patient and preparation of medicine, semi-eternal storage of medical examination data owing to storage and search of medical examination data, exact medical examination and prescription using this medical examination data by patient and doctor, and so on.

  • PDF

An image analysis system Design using Arduino sensor and feature point extraction algorithm to prevent intrusion

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.23-28
    • /
    • 2021
  • In this paper, we studied a system that can efficiently build security management for single-person households using Arduino, ESP32-CAM and PIR sensors, and proposed an Android app with an internet connection. The ESP32-CAM is an Arduino compatible board that supports both Wi-Fi, Bluetooth, and cameras using an ESP32-based processor. The PCB on-board antenna may be used independently, and the sensitivity may be expanded by separately connecting the external antenna. This system has implemented an Arduino-based Unauthorized intrusion system that can significantly help prevent crimes in single-person households using the combination of PIR sensors, Arduino devices, and smartphones. unauthorized intrusion system, showing the connection between Arduino Uno and ESP32-CAM and with smartphone applications. Recently, if daily quarantine is underway around us and it is necessary to verify the identity of visitors, it is expected that it will help maintain a safety net if this system is applied for the purpose of facial recognition and restricting some access. This technology is widely used to verify that the characters in the two images entered into the system are the same or to determine who the characters in the images are most similar to among those previously stored in the internal database. There is an advantage that it may be implemented in a low-power, low-cost environment through image recognition, comparison, feature point extraction, and comparison.

Categorization of Regional Delivery System for the Elderly Chronic Health Care and Long-Term Care (지역별 노인 만성기 의료 및 요양·돌봄 공급체계 유형화)

  • Nan-He Yoon;Sunghun Yun;Dongmin Seo;Yoon Kim;Hongsoo Kim
    • Health Policy and Management
    • /
    • v.33 no.4
    • /
    • pp.479-488
    • /
    • 2023
  • Background: By applying the suggested criteria for needs-based chronic medical care and long-term care delivery system for the elderly, the current status of delivery system was identified and regional delivery systems were categorized according to quantity and quality of delivery system. Methods: National claims data were used for this study. All claims data of medical and long-term care uses by the elderly and all claims data from long-term care hospitals and nursing homes in 2016 were analyzed to categorize the regional medical and long-term care delivery system. The current status of the delivery system with a high possibility of transition to a needs-based appropriate delivery system was identified. The necessary and actual amount of regional supply was calculated based on their needs, and the structure of delivery systems was evaluated in terms of the needs-based quality of the system. Finally, all regions were categorized into 15 types of medical and care delivery systems for the elderly. Results: Of the total 55 regions, 89.1% of regions had an oversupply of elderly medical and care services compared to the necessary supply based on their needs. However, 69.1% of regions met the criteria for less than two types of needs groups, and 21.8% of regions were identified as regions where the numbers of institutions or regions with a high possibility of transition to an appropriate delivery system were below the average levels for all four needs groups. Conclusion: In order to establish an appropriate community-based integrated elderly care system, it is necessary to analyze the characteristics of the regional delivery system categories and to plan a needs-based delivery system regionally.

Applying CEE (CrossEntropyError) to improve performance of Q-Learning algorithm (Q-learning 알고리즘이 성능 향상을 위한 CEE(CrossEntropyError)적용)

  • Kang, Hyun-Gu;Seo, Dong-Sung;Lee, Byeong-seok;Kang, Min-Soo
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, the Q-Learning algorithm, which is one kind of reinforcement learning, is mainly used to implement artificial intelligence system in combination with deep learning. Many research is going on to improve the performance of Q-Learning. Therefore, purpose of theory try to improve the performance of Q-Learning algorithm. This Theory apply Cross Entropy Error to the loss function of Q-Learning algorithm. Since the mean squared error used in Q-Learning is difficult to measure the exact error rate, the Cross Entropy Error, known to be highly accurate, is applied to the loss function. Experimental results show that the success rate of the Mean Squared Error used in the existing reinforcement learning was about 12% and the Cross Entropy Error used in the deep learning was about 36%. The success rate was shown.