Korean journal of aerospace and environmental medicine
/
v.31
no.2
/
pp.33-37
/
2021
In the era of the 4th industrial revolution, the aviation industry is also growing remarkably with the development of artificial intelligence and networks, so it is necessary to study a new concept of crew resource management (CRM), which is required in the process of operating state-of-the-art equipment. The automation system, which has been treated only as a tool, is changing its role as a decision-making agent with the development of artificial intelligence, and it is necessary to set clear standards for the role and responsibility in the safety-critical field. We present a new perspective on the automation system in the CRM program through the understanding of the autonomous system. In the future, autonomous system will develop as an agent for human pilots to cooperate, and accordingly, changes in role division and reorganization of regulations are required.
With the entry into the aging society, we are increasingly interested in wellness, and personalized medical services through artificial intelligence are expanding. In order to provide personalized medical services, it is difficult to provide accurate medical analysis services only with the existing hospital system components PM / PA, OCS, EMR, PACS, and LIS. Therefore, it is necessary to present the hospital system model and the construction plan suitable for personalized medical service. Currently, some medical cloud services and artificial intelligence diagnosis services using Watson are being introduced in domestic. However, there are not many examples of systematic hospital system construction. Therefore, this paper proposes a hospital system model suitable for personalized medical service. To do this, we design a model that integrates medical big data construction and AI medical analysis system into the existing hospital system components, and suggest development plan of each module. The proposed model is meaningful as a basic research that provides guidelines for the construction of new hospital system in the future.
Yoon, Hyun Jin;Jeong, Young Jin;Kang, Hyun;Jeong, Ji Eun;Kang, Do-Young
Progress in Medical Physics
/
v.30
no.2
/
pp.49-58
/
2019
Purpose: Automated analytical systems have begun to emerge as a database system that enables the scanning of medical images to be performed on computers and the construction of big data. Deep-learning artificial intelligence (AI) architectures have been developed and applied to medical images, making high-precision diagnosis possible. Materials and Methods: For diagnosis, the medical images need to be labeled and standardized. After pre-processing the data and entering them into the deep-learning architecture, the final diagnosis results can be obtained quickly and accurately. To solve the problem of overfitting because of an insufficient amount of labeled data, data augmentation is performed through rotation, using left and right flips to artificially increase the amount of data. Because various deep-learning architectures have been developed and publicized over the past few years, the results of the diagnosis can be obtained by entering a medical image. Results: Classification and regression are performed by a supervised machine-learning method and clustering and generation are performed by an unsupervised machine-learning method. When the convolutional neural network (CNN) method is applied to the deep-learning layer, feature extraction can be used to classify diseases very efficiently and thus to diagnose various diseases. Conclusions: AI, using a deep-learning architecture, has expertise in medical image analysis of the nerves, retina, lungs, digital pathology, breast, heart, abdomen, and musculo-skeletal system.
This paper confirmed the technical reliability of mobile-based sarcopenia prediction and monitoring system. In implementing the developed system, we designed using only sensors built into a smartphone without a separate external device. The prediction system predicts the possibility of sarcopenia without visiting a hospital by performing the SARC-F survey, the 5-time chair stand test, and the rapid tapping test. The Monitoring system tracks and analyzes the average walking speed in daily life to quickly detect the risk of sarcopenia. Through this, it is possible to rapid detection of undiagnosed risk of undiagnosed sarcopenia and initiate appropriate medical treatment. Through prediction and monitoring system, the user may predict and manage sarcopenia, and the developed system can have a positive effect on reducing medical demand and reducing medical costs. In addition, collected data is useful for the patient-doctor communication. Furthermore, the collected data can be used for learning data of artificial intelligence, contributing to medical artificial intelligence and e-health industry.
KIM, Song-Eun;MUN, Ji-Hui;KIM, Kyoung-Sook;KANG, Min-Soo
Korean Journal of Artificial Intelligence
/
v.8
no.1
/
pp.1-6
/
2020
The Recently there has been a growing interest in health care due to the COVID-19 situation. In this paper, we intend to develop a healthcare monitoring system to provide users with smart healthcare systems in line with the healthcare 3.0 era. The system consists of a wireless network between various sensors, Android smartphones, and OLEDs using Bluetooth, and through this, a health care monitoring system capable of collecting user's biometric information and managing health by receiving data values of sensors connected to Arduino. In conclusion, the user's BPM value was calculated using the heart rate sensor, and the exercise intensity can be adjusted through this. In addition, a step derivation algorithm is implemented using an acceleration sensor, and calorie consumption can be measured using the step and weight values. As such, the heart rate, step count, calorie consumption data can be transmitted to a smartphone application through a Bluetooth module and output, and can be output to an OLED for users who are not easy to access the smartphone. This healthcare monitoring system can be applied to various groups and technologies.
Journal of Physiology & Pathology in Korean Medicine
/
v.35
no.5
/
pp.132-138
/
2021
Artificial intelligence technology sheds light on new ways of innovating acupuncture research. As acupoint selection is specific to target diseases, each acupoint is generally believed to have a specific indication. However, the specificity of acupoint selection may be not always same with the specificity of acupoint indication. In this review, we propose that the specificity of acupoint indication can be inferred from clinical data using reverse inference. Using forward inference, the prescribed acupoints for each disease can be quantified for the specificity of acupoint selection. Using reverse inference, targeted diseases for each acupoint can be quantified for the specificity of acupoint indication. It is noteworthy that the selection of an acupoint for a particular disease does not imply the acupoint has specific indications for that disease. Electronic medical record includes various symptoms and chosen acupoint combinations. Data mining approach can be useful to reveal the complex relationships between diseases and acupoints from clinical data. Combining the clinical information and the bodily sensation map, the spatial patterns of acupoint indication can be further estimated. Interoperable medical data should be collected for medical knowledge discovery and clinical decision support system. In the era of artificial intelligence, machine learning can reveal the associations between diseases and prescribed acupoints from large scale clinical data warehouse.
This paper presents the content regarding electronic medical examination chart and data treatment for efficient medical examination and prompt treatment by realizing mutual conversation type remote medical examination system among 3 parties(patient, doctor, pharmacist) on internet base. This is an intelligence type remote medical examination system for both on-line and off-line mode to transcend time and space on the web being participated by anybody, which is cheap type to solve problems in existing remote medical examination system such as high price based on hardware, incompatibility, and so on. By interconnecting ASP and SQL on IIS 4.0 web server, database enables system integration for efficient data processing, on-line consultation between patient and doctor, medical examination on off-line, transmission of medical prescription to pharmacist designated by patient and preparation of medicine, semi-eternal storage of medical examination data owing to storage and search of medical examination data, exact medical examination and prescription using this medical examination data by patient and doctor, and so on.
In this paper, we studied a system that can efficiently build security management for single-person households using Arduino, ESP32-CAM and PIR sensors, and proposed an Android app with an internet connection. The ESP32-CAM is an Arduino compatible board that supports both Wi-Fi, Bluetooth, and cameras using an ESP32-based processor. The PCB on-board antenna may be used independently, and the sensitivity may be expanded by separately connecting the external antenna. This system has implemented an Arduino-based Unauthorized intrusion system that can significantly help prevent crimes in single-person households using the combination of PIR sensors, Arduino devices, and smartphones. unauthorized intrusion system, showing the connection between Arduino Uno and ESP32-CAM and with smartphone applications. Recently, if daily quarantine is underway around us and it is necessary to verify the identity of visitors, it is expected that it will help maintain a safety net if this system is applied for the purpose of facial recognition and restricting some access. This technology is widely used to verify that the characters in the two images entered into the system are the same or to determine who the characters in the images are most similar to among those previously stored in the internal database. There is an advantage that it may be implemented in a low-power, low-cost environment through image recognition, comparison, feature point extraction, and comparison.
Nan-He Yoon;Sunghun Yun;Dongmin Seo;Yoon Kim;Hongsoo Kim
Health Policy and Management
/
v.33
no.4
/
pp.479-488
/
2023
Background: By applying the suggested criteria for needs-based chronic medical care and long-term care delivery system for the elderly, the current status of delivery system was identified and regional delivery systems were categorized according to quantity and quality of delivery system. Methods: National claims data were used for this study. All claims data of medical and long-term care uses by the elderly and all claims data from long-term care hospitals and nursing homes in 2016 were analyzed to categorize the regional medical and long-term care delivery system. The current status of the delivery system with a high possibility of transition to a needs-based appropriate delivery system was identified. The necessary and actual amount of regional supply was calculated based on their needs, and the structure of delivery systems was evaluated in terms of the needs-based quality of the system. Finally, all regions were categorized into 15 types of medical and care delivery systems for the elderly. Results: Of the total 55 regions, 89.1% of regions had an oversupply of elderly medical and care services compared to the necessary supply based on their needs. However, 69.1% of regions met the criteria for less than two types of needs groups, and 21.8% of regions were identified as regions where the numbers of institutions or regions with a high possibility of transition to an appropriate delivery system were below the average levels for all four needs groups. Conclusion: In order to establish an appropriate community-based integrated elderly care system, it is necessary to analyze the characteristics of the regional delivery system categories and to plan a needs-based delivery system regionally.
Recently, the Q-Learning algorithm, which is one kind of reinforcement learning, is mainly used to implement artificial intelligence system in combination with deep learning. Many research is going on to improve the performance of Q-Learning. Therefore, purpose of theory try to improve the performance of Q-Learning algorithm. This Theory apply Cross Entropy Error to the loss function of Q-Learning algorithm. Since the mean squared error used in Q-Learning is difficult to measure the exact error rate, the Cross Entropy Error, known to be highly accurate, is applied to the loss function. Experimental results show that the success rate of the Mean Squared Error used in the existing reinforcement learning was about 12% and the Cross Entropy Error used in the deep learning was about 36%. The success rate was shown.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.