The ultimate goal of human assisted reproductive technology is to achieve a healthy pregnancy and birth, ideally from the selection and transfer of a single competent embryo. Recently, techniques for efficiently evaluating the state and quality of preimplantation embryos using time-lapse imaging systems have been applied. Artificial intelligence programs based on deep learning technology and big data analysis of time-lapse monitoring system during in vitro culture of preimplantation embryos have also been rapidly developed. In addition, several molecular markers of the secretome have been successfully analyzed in spent embryo culture media, which could easily be obtained during in vitro embryo culture. It is also possible to analyze small amounts of cell-free nucleic acids, mitochondrial nucleic acids, miRNA, and long non-coding RNA derived from embryos using real-time polymerase chain reaction (PCR) or digital PCR, as well as next-generation sequencing. Various efforts are being made to use non-invasive evaluation of embryo quality (NiEEQ) to select the embryo with the best developmental competence. However, each NiEEQ method has some limitations that should be evaluated case by case. Therefore, an integrated analysis strategy fusing several NiEEQ methods should be urgently developed and confirmed by proper clinical trials.
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.1
/
pp.76-83
/
2023
Recently, the development of computer vision with deep learning has made object detection using images applicable to diverse fields, such as medical care, manufacturing, and transportation. The manufacturing industry is saving time and money by applying computer vision technology to detect defects or issues that may occur during the manufacturing and inspection process. Annotations of collected images and their location information are required for computer vision technology. However, manually labeling large amounts of images is time-consuming, expensive, and can vary among workers, which may affect annotation quality and cause inaccurate performance. This paper proposes a process that can automatically collect annotations and location information for images using eXplainable AI, without manual annotation. If applied to the manufacturing industry, this process is thought to save the time and cost required for image annotation collection and collect relatively high-quality annotation information.
M.J. Lee;H.H. Park;M.S. Baek;E.J. Kwon;S.W. Byon;Y.S. Park;E.S. Jung;H.S. Park
Electronics and Telecommunications Trends
/
v.38
no.3
/
pp.57-65
/
2023
Emergency numbers, such as 112 and 119, are used in many countries to connect people in need with emergency services such as police, fire, and medical assistance. We describe development directions of intelligent response technology for emergency calls. The development of this technology refers to enhancing the efficiency and effectiveness of response systems by using advanced methods such as artificial intelligence, machine learning, and big data analytics. We focus on a system that assists the receptionist of an emergency call. In the future, the recognition rate and decision-making accuracy of intelligent response technologies should be improved considering characteristics of public safety and emergency domain data. Although the current technology remains at the level of assisting a receptionist, a fully autonomous response technology is expected to emerge in the future.
This study is a review study attempted to analyze the current situation of surgical robots based on previous research on surgical robots in the era of the 4th revolution, and to forecast the future direction of surgical robots. Surgical robots have made full progress since the launch of the da Vinci and the surgical robot is playing a role of supporting the surgeries of the surgeons or the master-slave method reflecting the intention of the surgeons. Recently, technologies are being developed to combine artificial intelligence and big data with surgical robots, and to commercialize a universal platform rather than a platform dedicated to surgery. Moreover, technologies for automating surgical robots are being developed by generating 3D image data based on diagnostic image data, providing real-time images, and integrating image data into one system. For the development of surgical robots, cooperation with clinicians and engineers, safety management of surgical robot, and institutional support for the use of surgical robots will be required.
Hyo Sub Jun;Kuhyun Yang;Jongyeon Kim;Jin Pyeong Jeon;Sun Jeong Kim;Jun Hyong Ahn;Seung Jin Lee;Hyuk Jai Choi;In Bok Chang;Jeong Jin Park;Jong-Kook Rhim;Sung-Chul Jin;Sung Min Cho;Sung-Pil Joo;Seung Hun Sheen;Sang Hyung Lee
Journal of Korean Neurosurgical Society
/
v.67
no.4
/
pp.385-396
/
2024
Previously, we reported the concept of a cloud-based telemedicine platform for patients with intracerebral hemorrhage (ICH) at local emergency rooms in rural and medically underserved areas in Gangwon state by combining artificial intelligence and remote consultation with a neurosurgeon. Developing a telemedicine ICH treatment protocol exclusively for doctors with less ICH expertise working in emergency rooms should be part of establishing this system. Difficulties arise in providing appropriate early treatment for ICH in rural and underserved areas before the patient is transferred to a nearby hub hospital with stroke specialists. This has been an unmet medical need for decades. The available reporting ICH guidelines are realistically applicable in university hospitals with a well-equipped infrastructure. However, it is very difficult for doctors inexperienced with ICH treatment to appropriately select and deliver ICH treatment based on the guidelines. To address these issues, we developed an ICH telemedicine protocol. Neurosurgeons from four university hospitals in Gangwon state first wrote the guidelines, and professors with extensive ICH expertise across the country revised them. Guidelines and recommendations for ICH management were described as simply as possible to allow more doctors to use them easily. We hope that our effort in developing the telemedicine protocols will ultimately improve the quality of ICH treatment in local emergency rooms in rural and underserved areas in Gangwon state.
The Journal of the Korea institute of electronic communication sciences
/
v.13
no.1
/
pp.221-228
/
2018
Big data is an important keyword in World's Fourth Industrial Revolution in public and private division including IoT(Internet of Things), AI(Artificial Intelligence) and Cloud system in the fields of science, technology, industry and society. Big data based on services are available in various fields such as transportation, weather, medical care, and marketing. In particular, in the field of sports, various types of bio-signals can be collected and managed by the appearance of a wearable device that can measure vital signs in training or rehabilitation for daily life rather than a hospital or a rehabilitation center. However, research on big data with vital signs from wearable devices for training and rehabilitation for baseball players have not yet been stimulated. Therefore, in this paper, we propose a system for baseball infield and outfield players, especially which can store and analyze the momentum measurement vital signals based on big data.
The attending system is a medical system that allows doctors in clinics to use the extra equipment in hospitals-beds, laboratory, operating room, etc-for their patient's care under a contract between the doctors and hospitals. Therefore, the system is very beneficial in terms of the efficiency of the usage of medical resources. However, it is necessary to develop a strong support system to strengthen its weaknesses and supplement its merits. If doctors use hospital beds under the attending system of hospitals, they would be able to check a patient's condition often and provide them with nursing care services. However, the current attending system lacks delivery and assistance support. Thus, for the successful performance of the attending system, a networking system should be developed to facilitate communication between the doctors and nurses. In particular, the nursing records in the attending system could help doctors monitor the patient's condition and provision of nursing care services. A nursing record is the formal documentation associated with nursing care. It is merely a data repository that helps nurses to track their activities; nursing records thus represent a resource of primary information that can be reused. In order to maximize their usefulness, nursing records have been introduced as part of computerized patient records. However, nursing records are internal data that are not disclosed by hospitals. Moreover, the lack of standardization of the record list makes it difficult to share nursing records. Under the attending system, nurses would want to minimize the amount of effort they have to put in for the maintenance of additional records. Hence, they would try to maintain the current level of nursing records in the form of record lists and record attributes, while doctors would require more detailed and real-time information about their patients in order to monitor their condition. Therefore, this study developed a system for assisting in the maintenance and sharing of the nursing records under the attending system. In contrast to previous research on the functionality of computer-based nursing records, we have emphasized the practical usefulness of nursing records from the viewpoint of the actual implementation of the attending system. We suggested that nurses could design a nursing record dictionary for their convenience, and that doctors and nurses could confirm the definitions that they looked up in the dictionary through negotiations with intelligent agents. Such an agent-based system could facilitate networking among medical institutes. Multi-agent systems are a widely accepted paradigm for the distribution and sharing of computation workloads in the scientific community. Agent-based systems have been developed with differences in functional cooperation, coordination, and negotiation. To increase such communication, a framework for a multi-agent based system is proposed in this study. The agent-based approach is useful for developing a system that promotes trade-offs between transactions involving multiple attributes. A brief summary of our contributions follows. First, we propose an efficient and accurate utility representation and acquisition mechanism based on a preference scale while minimizing user interactions with the agent. Trade-offs between various transaction attributes can also be easily computed. Second, by providing a multi-attribute negotiation framework based on the attribute utility evaluation mechanism, we allow both the doctors in charge and nurses to negotiate over various transaction attributes in the nursing record lists that are defined by the latter. Third, we have designed the architecture of the nursing record management server and a system of agents that provides support to the doctors and nurses with regard to the framework and mechanisms proposed above. A formal protocol has also been developed to create and control the communication required for negotiations. We verified the realization of the system by developing a web-based prototype. The system was implemented using ASP and IIS5.1.
Proceedings of the Korea Inteligent Information System Society Conference
/
2007.05a
/
pp.389-398
/
2007
Case-based reasoning (CBR) is one of the most popular prediction techniques for medical diagnosis because it is easy to apply, has no possibility of overfitting, and provides a good explanation for the output. However, it has a critical limitation - its prediction performance is generally lower than other artificial intelligence techniques like artificial neural networks (ANNs). In order to obtain accurate results from CBR, effective retrieval and matching of useful prior cases for the problem is essential, but it is still a controversial issue to design a good matching and retrieval mechanism for CBR systems. In this study, we propose a novel approach to enhance the prediction performance of CBR. Our suggestion is the simultaneous optimization of feature weights, instance selection, and the number of neighbors that combine using genetic algorithms (GAs). Our model improves the prediction performance in three ways - (1) measuring similarity between cases more accurately by considering relative importance of each feature, (2) eliminating redundant or erroneous reference cases, and (3) combining several similar cases represent significant patterns. To validate the usefulness of our model, this study applied it to a real-world case for evaluating cytological features derived directly from a digital scan of breast fine needle aspirate (FNA) slides. Experimental results showed that the prediction accuracy of conventional CBR may be improved significantly by using our model. We also found that our proposed model outperformed all the other optimized models for CBR using GA.
Journal of the Korea Society of Computer and Information
/
v.26
no.7
/
pp.9-17
/
2021
In this study, we propose a part of the CDSS(Clinical Decision Support System) study, a system that can classify chemotherapy, one of the treatment methods for colorectal cancer patients. In the treatment of colorectal cancer, the selection of chemotherapy according to the patient's condition is very important because it is directly related to the patient's survival period. Therefore, in this study, chemotherapy was classified using a machine learning algorithm by creating a baseline model, a pathological model, and a combined model using both characteristics of the patient using the individual and pathological characteristics of colorectal cancer patients. As a result of comparing the prediction accuracy with Top-n Accuracy, ROC curve, and AUC, it was found that the combined model showed the best prediction accuracy, and that the LGBM algorithm had the best performance. In this study, a chemotherapy classification model suitable for the patient's condition was constructed by classifying the model by patient characteristics using a machine learning algorithm. Based on the results of this study in future studies, it will be helpful for CDSS research by creating a better performing chemotherapy classification model.
This paper presents a machine learning model that predicts stroke risks in atrial fibrillation patients using public big data. As the training data, 68 independent variables including demographic, medical history, health examination were collected from the Korean National Health Insurance Service. To predict stroke incidence in patients with atrial fibrillation, we applied deep neural network. We firstly verify the performance of conventional statistical models (CHADS2, CHA2DS2-VASc). Then we compared proposed model with the statistical models for various hyperparameters. Accuracy and area under the receiver operating characteristic (AUROC) were mainly used as indicators for performance evaluation. As a result, the model using batch normalization showed the highest performance, which recorded better performance than the statistical model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.