• Title/Summary/Keyword: medical electrical equipment

Search Result 110, Processing Time 0.026 seconds

Design of the Medical Thermal Array Printer Module Based on Microcontroller (마이크로 콘트롤러를 이용한 의료용 열전식 프린터 모듈의 개발에 관한 연구)

  • Lee, Myoungho;Kong, Inwook;Kwon, Hyukje
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.129-138
    • /
    • 1996
  • This paper describes design techniques of general purpose thermal array printer, especially easily applicable to medical measurement equipment. The'general'means that the proposed thermal array printer can be applied to not only medical field but other industrial field by establishing the eligible protocol. The thermal array printer is composed of i)MPU and its peripherals ii)printer head control, iii)diverse protection circuits, and iv)serial communication. In this paper the performance of the proposed thermal array printer was evaluated by applying to an 3 channel electrocardiogram recorder. The propped system can support'Hangul'text as well as alphanumeric characters and any bitmap image.

  • PDF

Development and utility evaluation of new Multi-Leaf Collimator for Diagnostic X-ray Equipment

  • Ji, Hoon;Han, Su Chul;Baek, Jong Hyeun;Lee, Dong Hoon;Park, Seungwoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.936-942
    • /
    • 2018
  • The diagnostic multi-leaf collimator preventing unnecessary dose from entering into patients during the diagnostic examination was made in this study. The movement of the entire 50 leaves was embodied with the group of 25 ones thereof configured in a pair facing each other on the left and right of the median line. Dimensions of the length, width, and height of each shielding leaf were $5{\times}0.5{\times}0.5cm^3$ resulting in the maximum boost field of $10{\times}10cm^2$. The material of multi-leaf collimator had the excellence on the machinability with the use of the SKD-11 alloy tool steel having the high wear resistance against frequent movement, and it was devised to control both-side's shielding leaves by moving 2 motors unlike existing remedial multi-leaf collimator that use as many motors as the number of 50 shielding leaves. Thereafter, the transmission dose of leaves, cross-leaf leakage dose, and inter-leaf leakage dose were measured by the developed multi-leaf collimator attached to X-ray equipment. An ionization chamber was used to detect doses there from, and the comparative analysis was carried out by means of the radiographic film that was easy to detect the dose leakage in between each leaf. Results obtained from the test conducted in comparative analysis yielded approximately 98%, 96%, and 94% of shielding efficiency realized at each level of energy of 80kV, 100kV, and 120kV it was confirmed there was no dose leakage resulted from the varied level of irradiation energy. Thus the multi-leaf collimator to be developed based on this study is thought that it could fully reduce the unnecessary dose to patients in the diagnostic test and the shielding efficiency thereof is expected to be increasing if it is made in a miniaturized form with a way of increasing the thickness of each leaf later for an extended application to general diagnostic purposes.

The Development of Safety and Essential Performance Criteria for Lower Extremity Robotic Assisted Gait Training System (하지 로봇재활의료기기의 안전성 및 필수성능 평가 기준 개발)

  • Yong Wan Kang;Ji Yean Kwon
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.190-203
    • /
    • 2023
  • The purpose of this study is to provide basic data to ensure the safety and essential performance of a Lower Extremity robotic assisted gait training system and to provide advanced technology and technical basis to the industry handling the system. Based on IEC 60601-1:2012/AMD2:2020 (Medical Electrical Equipment - General requirements for basic safety and essential performance of medical electrical equipment), IEC 62366-1:2015/AMD1:2020 (Medical devices - Part 1: Application of usability engineering to medical devices) and EN ISO 14971:2019 (Medical devices - Application of risk management to medical devices), the requirements for ensuring the safety and essential performance of the Lower Extremity robotic assisted gait training system were derived. Through the Delphi survey method and scenario analysis, which reflects the opinions and knowledge of experts in the fields of development, testing and review of technical documents, and quality assurance of medical devices, validity and reliability were conducted and obtained results with adequate content validity ratio (CVR; 0.7≤) and excellent reliability (Cronbach's α; 0.9≤). As a result, it was confirmed that the reliability and validity of the risk management process to ensure the safety and essential performance of the Lower Extremity robotic assisted gait training system are required a model can be established to provide measures to reduce risks according to the level of risk exposure caused by usage.

Effect of 8 mW 525 nm LEDs Light Irradiation on the Defect Reduction in the Skin Wound of SD-rat

  • Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.116-119
    • /
    • 2008
  • The purpose of this study is to develop the Photodynamic Therapy Equipment for medical treatment. We developed the equipment which was helpful in palpating wound healing by using 525 nm LEDs. The equipment was assembled with a micro-controller and green color LEDs, and designed to enable us to control light irradiation time, intensity and so on. In this study, the designed device was used to find out how 525 nm LEDs light affected the skin wound of SD-Rat(Sprague-Dawley Rat). We divided the participants into two groups; irradiation group which was irradiated one hour a day for 9 consecutive days, and none irradiation group. The results showed that the study group had lower incidence of inflammation and faster recovery, compared with the control group.

Development of High-Performance Single-Phase Line-Interactive Dynamic Voltage Restorer (고성능 단상 선로응동형 DVR(Dynamic Voltage Restorer))

  • Bae, Byung-Yeol;Lee, Dong-Geun;Kwak, No-Hong;Park, Sang-Ho;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1947-1954
    • /
    • 2007
  • This paper describes the development of a high-performance single-phase line-interactive Dynamic voltage Restorer, which is composed of an H-bridge inverter and super-capacitors. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software, and experimental works with 3kVA prototype. The developed system can compensates the input voltage sag and interruption within 2ms, in which the maximum allowable duration of voltage interruption is 1.5 seconds. It can be effectively used to compensate the voltage interruption in the sensitive load, such as computer, communication equipment, automation equipment, and medical equipment. The developed system has a simple structure to be easily implemented with commercially available components and to be highly reliable in operation.

A Study on Establishment of Essential Performance Evaluation Criteria for C-arm Computed Tomography (C-arm CT의 필수 성능평가 기준 마련을 위한 연구)

  • Kim, Eun-Hye;Park, Hye-Min;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2022
  • In order to overcome the image quality limitations of the conventional C-arm, a flat panel detector (FPD) is used to enhance spatial resolution, detective quantum efficiency, frame rate, and dynamic range. Three-dimensional (3D) visualized information can be obtained from C-arm computed tomography (CT) equipped with an FPD, which can reduce patient discomfort and provide various medical information to health care providers by conducting procedures in the interventional procedure room without moving the patient to the CT scan room. Unlike a conventional C-arm device, a C-arm CT requires different basic safety and essential performance evaluation criteria; therefore, in this study, basic safety and essential performance evaluation criteria to protect patients, medical staff, and radiologists were derived based on International Electrotechnical Commission (IEC) standards, the Ministry of Food and Drug Safety (MFDS) standards in Korea, and the rules on the installation and operation of special medical equipment in Korea. As a result of the study, six basic safety evaluation criteria related to electrical and mechanical radiation safety (leakage current, collision protection, emergency stopping device, overheating, recovery management, and ingress of water or particulate matter into medical electrical (ME) equipment and ME systems: footswitches) and 14 essential performance evaluation criteria (accuracy of tube voltage, accuracy of tube current, accuracy of loading time, accuracy of current time product, reproducibility of radiation output, linearity and consistency in radiography, half layer value in X-ray equipment, focal size and collimator, relationship between X-ray field and image reception area, consistency of light irradiation versus X-ray irradiation, performance of the mechanical device, focal spot to skin distance accuracy, image quality evaluation, and technical characteristic of cone-beam computed tomography) were selected for a total of 20 criteria.

Calculation of the Eddy Current Effect Transfer Function Using the Finite Element Method (유한요소법을 이용한 와전류 영향 전달함수의 계산)

  • Lee, S.Y.;Khang, H.S.;Yi, J.H.;Mun, C.W.;Lee, K.S.;Cho, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.92-93
    • /
    • 1998
  • In this study, we have established the technique to estimate the gradient waveforms distorted by the eddy current in MRI. After obtaining the eddy current effect transfer function using the finite element method, we have used the transfer function to estimate the output gradient waveforms at any points inside the imaging region. We also present experimental results to be compared with estimated ones.

  • PDF

Analysis of efficiency of X-ray equipment for medical service (의료용 X-ray 기기의 성능평가)

  • Kim, Tae-Gon;Kim, Toung-Pyo;Lee, Ho-Sic;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.426-426
    • /
    • 2009
  • Diagnostic X-ray system is general and basic medical equipment to be used in mostly medical organizations, but being bombed of radioactivity is a big weak point when irradiates a X-ray to the human body so that ICRP restricted the radiation exposure tolerance of the human body. In order to reduce being bombed, the many research and development is now advanced. A lots of diagnostic X-ray machines have currently used due to the increase of occurrence efficiency of X-ray and precisely the output control by using the inverter which is a high speed switching semiconductors. For getting the confidence of the X-ray machine, the same radiation occurrence, same evaluation, and same irradiation condition are necessary when evaluates X-ray irradiation. It is the most important part for the accuracy of the test result and the patient safety. This paper has produced the high voltage occurrence system of full-wave rectification method by using the LC resonance inverter, and evaluated the irradiation reproducibility in order to use it in diagnosis of the patient.

  • PDF

A Study on the Electrical Strength of Insulating Materials for High-Tc Superconducting Devices

  • Bae, Duck Kweon;Kim, Chung-Hyeok;Pak, Min-Sun;Oh, Yong-Cheul;Kim, Jin-Sa;Shin, Cheol-Gee;Lee, Joon-Ung;Song, Min-Jong;Choi, Woon-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.294-300
    • /
    • 2005
  • According to the trend for electric power equipment of high capacity and reduction of its size, the needs for the new high performance electric equipments become more and more important. On of the possible solution is high temperature superconducting (HTS) power application. Following the successful development of practical HTS wires, there have been renewed activities in developing superconducting power equipment. HTS equipments have to be operated in a coolant such as liquid nitrogen ($LN_2$) or cooled by conduction-cooling method such as using Gifford-McMahon (G-M) cryocooler to maintain the temperature below critical level. In this paper, the dielectric strength of some insulating materials, such as unfilled epoxy, filled epoxy, and polyimide in $LN_2$ was analyzed. Epoxy is a good insulating material but fragile at cryogenic temperature. The filled epoxy composite not only compensates for this fragile property but enhances its dielectric strength.

A Study on Portable Multi Electrical Cupping System (휴대용 멀티 전동 부항 시스템에 관한 연구)

  • Kim, Jong-Chan;Yang, Chul-Oh;Ban, Kyeong-Jin;Lee, Kwang-Eui;Kim, Chee-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.2
    • /
    • pp.250-257
    • /
    • 2012
  • Recently oriental medicine has become a new issue in the global medical field because of increasing demands for the treatment of old people. Western medical equipment is becoming popular with big companies related to IT, communication and medical treatment. But globalization of oriental medicine techniques is inadequate due to lack of knowledge about oriental medicine. The cupping equipment has great growth potential because it is easy for old people to use the equipment. The purpose of this paper is to promote the portable multi electrical cupping system. The system may be used by patients themselves without any help from others. By using many cupping cups at the same time and regulating the timer and vacuum pressure. The patient can decrease itching and relax the hardened muscles. The system is expected to grow in the future as oriental medicine will be in high demand in aging society with IT convergence industry.