• Title/Summary/Keyword: mediated inhibition

Search Result 1,368, Processing Time 0.028 seconds

Effects of Silibinin on the Pharmacokinetics of Carvedilol after Oral Administration in Rats

  • Lee, Chong-Ki;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.153-159
    • /
    • 2011
  • This study was designed to investigate the effects of silibinin on the pharmacokinetics of carvedilol after oral administration of carvedilol in rats. Carvedilol was administered orally (3 mg/kg) with oral silibinin (0.3, 1.5 or 6 mg/kg) and intravenously (1 mg/kg) to rats. The effects of silibinin on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 2C9 and CYP2D6 activity were also evaluated. Silibinin inhibited CYP2C9 and CYP2D6 enzyme activity with 50% inhibition concentration ($IC_{50}$) of 5.2 ${\mu}M$ and 85.4 ${\mu}M$, respectively. In addition, silibinin significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared with the control group, the area under the plasma concentration-time curve was significantly increased by 36.3-57.1%, and the peak concentration was significantly increased by 51.1-88.5% in the presence of silibinin after oral administration of carvedilol. Consequently, the relative bio-availability of carvedilol was increased by 1.13- to 1.57-fold and the absolute bioavailability was significantly increased by 38.6-59.7%. The time to reach peak concentration and the terminal half-life were not significant. The enhanced oral bio-availability of carvedilol may result from inhibition of CYP2C9-mediated metabolism and P-gp-mediated efflux of carvedilol rather than inhibition of CYP2D6-mediated metabolism in the intestine and/or in the liver by silibinin.

Inhibition Mode of DNA Topoisomerase by Dibutyl Phthalate

  • Lee, Dong-Sun;Hong, Soon-Duck
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.366-367
    • /
    • 1996
  • Dibutyl phthalate induced topoisomerase Ⅰ mediated DNA relaxation comparable to that of camptothecin, and topoisomerase Ⅱ mediated DNA relaxation equipotent to that of 4'-(9-acridinylamino) methanesulfon-m-anisidide (m-AMSA). The relaxation activities of dibutyl phthalate were dose-de-pendent and nearly as potent as those of camptothecin and m-AMSA.

  • PDF

Specificity of cell-mediated immunity in guinea pigs sensitized with Mycobacterium spp using the leukocyte adherence inhibition test (Leukocyte adherence inhibition test를 이용한 Mycobacterium 속균(屬菌) 감작(感作)기니픽의 세포면역반응(細胞免疫反應)의 특이성(特異性))

  • Park, Seong-kuk;Jun, Moo-hyung;Lee, Hun-jun;Min, Won-gi;Yoon, Yong-dhuk
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.3
    • /
    • pp.283-289
    • /
    • 1989
  • In order to measure in vitro cell mediated immunity in the guinea pigs sensitized with the killed bacilli of Mycobacterium bovis ($AN_5$), M avium (serotype 2), M tuberculosis and M intracellulare (serotype 8), leukocyte adherence inhibition (LAI) test was established using the antigens of purified protein derivatives (PPD) tuberculin. By using LAI test, specificity of cell-mediated immune responses of the guinea pigs inoculated with various Mycobacterium spp was investigated, and comparison between values of LAI and skin test was also made to evaluate the specificity of the newly designed test. The results obtained throughout the experiments were summarized as follows; 1. The optimal concentration of PPD antigens for LAI test was 1 to 2mg per ml of medium. 2. When the leukocytes of guinea pigs sensitized with both M bovis($AN_5$) and M avium (serotype 2) for 2 to 8 weeks were incubated with homologous or heterologous PPD antigens, mean values of LAI test were $61.2{\pm}11.2$ and $65.6{\pm}5.1%$ in homologous PPD antigens respectively, while $30.0{\pm}3.7$ and $32.8{\pm}5.7%$ in heteNlogous PPD antigens, showing the prominently high value of LAI in the homologous syst,em (p<0.01). 3. When the leukocytes of guinea pigs sensitized with both M tuberculosis and M intracellulare (serotype 8) for 2 to 8 weeks were incubated with homologous and heterologous PPD antigens, mean values of LAI test were $67.9{\pm}2.9$ and $66.9{\pm}5.0%$ in homologous PPD antigens, while $27.4{\pm}7.4$ and $24.4{\pm}7.1%$ in heterologous PPD antigens, showing the prominently high value of LAI in the homologous system (p<0.01). 4. Comparing with the specificity of LAI and skin tests on the basis of the value obtained from the homologous system, deviation of reaction was revealed to be 49.5 to 100.2 in LAI test, and -15.9 to 52.0 in skin test.

  • PDF

Ginsenoside Rg1 Epigenetically Modulates Smad7 Expression in Liver Fibrosis via MicroRNA-152

  • Rongrong Zhang ;Xinmiao Li ;Yuxiang Gao ;Qiqi Tao;Zhichao Lang;Yating Zhan;Chunxue Li;Jianjian Zheng
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.534-542
    • /
    • 2023
  • Background: Ginsenoside Rg1, a bioactive component of Ginseng, has demonstrated anti-inflammatory, anti-cancer, and hepatoprotective effects. It is known that the epithelial-mesenchymal transition (EMT) plays a key role in the activation of hepatic stellate cells (HSCs). Recently, Rg1 has been shown to reverse liver fibrosis by suppressing EMT, although the mechanism of Rg1-mediated anti-fibrosis effects is still largely unclear. Interestingly, Smad7, a negative regulator of the transforming growth factor β (TGF-β) pathway, is often methylated during liver fibrosis. Whether Smad7 methylation plays a vital role in the effects of Rg1 on liver fibrosis remains unclear. Methods: Anti-fibrosis effects were examined after Rg1 processing in vivo and in vitro. Smad7 expression, Smad7 methylation, and microRNA-152 (miR-152) levels were also analyzed. Results: Rg1 significantly reduced the liver fibrosis caused by carbon tetrachloride, and reduced collagen deposition was also observed. Rg1 also contributed to the suppression of collagenation and HSC reproduction in vitro. Rg1 caused EMT inactivation, reducing Desmin and increasing E-cadherin levels. Notably, the effect of Rg1 on HSC activation was mediated by the TGF-β pathway. Rg1 induced Smad7 expression and demethylation. The over-expression of DNA methyltransferase 1 (DNMT1) blocked the Rg1-mediated inhibition of Smad7 methylation, and miR-152 targeted DNMT1. Further experiments suggested that Rg1 repressed Smad7 methylation via miR-152-mediated DNMT1 inhibition. MiR-152 inhibition reversed the Rg1-induced promotion of Smad7 expression and demethylation. In addition, miR-152 silencing led to the inhibition of the Rg1-induced EMT inactivation. Conclusion: Rg1 inhibits HSC activation by epigenetically modulating Smad7 expression and at least by partly inhibiting EMT.

MOLECULAR TARGETS IN SIGNALING PATHWAYS MEDIATING ANTI-TUMOR EFFECTS OF NON-STEROIDAL ANTI-INFLAMMATORY DRUGS (NSAIDs)

  • Hwang, Daniel
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.14-21
    • /
    • 2001
  • Many epidemiological studies have revealed that the use of aspirin or other non-steroidal anti-inflammatory drugs (NSAIDs) can reduce the risk of colon cancer. Since the well-documented pharmacological action of aspirin and other NSAIDs is the inhibition of cyclooxygenase [COX, the rate-limiting enzyme in prostaglandin (PG) biosynthesis], it has been inferred that the beneficial effect of NSAIDs may be mediated through the inhibition of PG biosynthesis.(omitted)

  • PDF

Alleviation of Senescence via ATM Inhibition in Accelerated Aging Models

  • Kuk, Myeong Uk;Kim, Jae Won;Lee, Young-Sam;Cho, Kyung A;Park, Joon Tae;Park, Sang Chul
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.210-217
    • /
    • 2019
  • The maintenance of mitochondrial function is closely linked to the control of senescence. In our previous study, we uncovered a novel mechanism in which senescence amelioration in normal aging cells is mediated by the recovered mitochondrial function upon Ataxia telangiectasia mutated (ATM) inhibition. However, it remains elusive whether this mechanism is also applicable to senescence amelioration in accelerated aging cells. In this study, we examined the role of ATM inhibition on mitochondrial function in Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome (WS) cells. We found that ATM inhibition induced mitochondrial functional recovery accompanied by metabolic reprogramming, which has been known to be a prerequisite for senescence alleviation in normal aging cells. Indeed, the induced mitochondrial metabolic reprogramming was coupled with senescence amelioration in accelerated aging cells. Furthermore, the therapeutic effect via ATM inhibition was observed in HGPS as evidenced by reduced progerin accumulation with concomitant decrease of abnormal nuclear morphology. Taken together, our data indicate that the mitochondrial functional recovery by ATM inhibition might represent a promising strategy to ameliorate the accelerated aging phenotypes and to treat age-related disease.

Induces Vasodilatation of Rat Mesenteric Artery in vitro Mainly by Inhibiting Receptor-Mediated $Ca^{2+}$ -Influx and $Ca^{2+}$ -Release

  • Cao Yong-Xiao;Zheng Jian-Pu;He Jian-Yu;Li Jie;Xu Cang-Bao;Edvinsson Lars
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.709-715
    • /
    • 2005
  • The purpose of this study was to investigate the effect of atropine on peripheral vasodilation and the mechanisms involved. The isometric tension of rat mesenteric artery rings was recorded in vitro on a myograph. The results showed that atropine, at concentrations greater than 1$\mu$M, relaxed the noradrenalin (NA)-precontracted rat mesenteric artery in a concentration-dependent manner. Atropine-induced vasodilatation was mediated, in part, by an endothelium-dependent mechanism, to which endothelium-derived hyperpolarizing factor may contribute. Atropine was able to shift the NA-induced concentration-response curve to the right, in a non-parallel manner, suggesting the mechanism of atropine was not mediated via the ${\alpha}_1$-adrenoreceptor. The $\beta$-adrenoreceptor and ATP sensitive potassium channel, a voltage dependent calcium channel, were not involved in the vasodilatation. However, atropine inhibited the contraction derived from NA and $CaCl_2$ in $Ca^{2+}$-free medium, in a concentration dependent manner, indicating the vasodilatation was related to the inhibition of extracellular $Ca^{2+}$ influx through the receptor-operated calcium channels and intracellular $Ca^{2+}$ release from the $Ca^{2+}$ store. Atropine had no effect on the caffeine-induced contraction in the artery segments, indicating the inhibition of intracellular $Ca^{2+}$ release as a result of atropine most likely occurs via the IP3 pathway rather than the ryanodine receptors. Our results suggest that atropine-induced vasodilatation is mainly from artery smooth muscle cells due to inhibition of the receptor-mediated $Ca^{2+}$-influx and $Ca^{2+}$-release, and partly from the endothelium mediated by EDHF.

Synergistic Effects of Bee Venom and Natural Killer Cells on B16F10 Melanoma Cell Growth Inhibition through IL-4-mediated Apoptosis

  • Sin, Dae Chul;Kang, Mi Suk;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Objectives : We investigated the synergistic effects of bee venom (BV) and natural killer (NK) cells on B16F10 melanoma cell apoptosis mediated by IL-4. Methods : We performed a cell viability assay to determine whether BV can enhance the inhibitory effect of NK-92MI cells on the growth of B16F10 melanoma cells, and western blot analysis to detect changes in the expression of IL-4, $IL-4R{\alpha}$, and other apoptosis-related proteins. EMSA was performed to observe the activity of STAT6. To confirm that the inhibitory effect of BV and NK cells was mediated by IL-4, the above tests were repeated after IL-4 silencing by siRNA (50 nM). Results : B16F10 melanoma cells co-cultured with NK-92MI cells and simultaneously treated by BV ($5{\mu}g/ml$) showed a higher degree of proliferation inhibition than when treated by BV ($5{\mu}g/ml$) alone or co-cultured with NK-92MI cells alone. Expression of IL-4, $IL-4R{\alpha}$, and that of other pro-apoptotic proteins was also enhanced after co-culture with NK-92MI cells and simultaneous treatment with BV ($5{\mu}g/ml$). Furthermore, the expression of anti-apoptotic bcl-2 decreased, and the activity of STAT6, as well as the expression of STAT6 and p-STAT6 were enhanced. IL-4 silencing siRNA (50 nM) in B16F10 cells, the effects of BV treatment and NK-92MI co-culture were reversed. Conclusion : These results suggest that BV could be an effective alternative therapy for malignant melanoma by enhancing the cytotoxic and apoptotic effect of NK cells through an IL-4-mediated pathway.

Phasic and Tonic Inhibition are Maintained Respectively by CaMKII and PKA in the Rat Visual Cortex

  • Joo, Kayoung;Yoon, Shin Hee;Rhie, Duck-Joo;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.517-524
    • /
    • 2014
  • Phasic and tonic ${\gamma}$-aminobutyric acidA ($GABA_A$) receptor-mediated inhibition critically regulate neuronal information processing. As these two inhibitory modalities have distinctive features in their receptor composition, subcellular localization of receptors, and the timing of receptor activation, it has been thought that they might exert distinct roles, if not completely separable, in the regulation of neuronal function. Inhibition should be maintained and regulated depending on changes in network activity, since maintenance of excitation-inhibition balance is essential for proper functioning of the nervous system. In the present study, we investigated how phasic and tonic inhibition are maintained and regulated by different signaling cascades. Inhibitory postsynaptic currents were measured as either electrically evoked events or spontaneous events to investigate regulation of phasic inhibition in layer 2/3 pyramidal neurons of the rat visual cortex. Tonic inhibition was assessed as changes in holding currents by the application of the $GABA_A$ receptor blocker bicuculline. Basal tone of phasic inhibition was maintained by intracellular $Ca^{2+}$ and $Ca^{2+}$/calmodulin-dependent protein kinase II (CaMKII). However, maintenance of tonic inhibition relied on protein kinase A activity. Depolarization of membrane potential (5 min of 0 mV holding) potentiated phasic inhibition via $Ca^{2+}$ and CaMKII but tonic inhibition was not affected. Thus, phasic and tonic inhibition seem to be independently maintained and regulated by different signaling cascades in the same cell. These results suggest that neuromodulatory signals might differentially regulate phasic and tonic inhibition in response to changes in brain states.

Presynaptic Mechanism Underlying Regulation of Transmitter Release by G Protein Coupled Receptors

  • Takahashi, Tomoyuki;Kajikawa, Yoshinao;Kimura, Masahiro;Saitoh, Naoto;Tsujimoto, Tetsuhiro
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.69-76
    • /
    • 2004
  • A variety of G protein coupled receptors (GPCRs) are expressed in the presynaptic terminals of central and peripheral synapses and play regulatory roles in transmitter release. The patch-clamp whole-cell recording technique, applied to the calyx of Held presynaptic terminal in brainstem slices of rodents, has made it possible to directly examine intracellular mechanisms underlying the GPCR-mediated presynaptic inhibition. At the calyx of Held, bath-application of agonists for GPCRs such as $GABA_B$ receptors, group III metabotropic glutamate receptors (mGluRs), adenosine $A_1$ receptors, or adrenaline ${\alpha}2$ receptors, attenuate evoked transmitter release via inhibiting voltage-activated $Ca^{2+}$ currents without affecting voltage-activated $K^+$ currents or inwardly rectifying $K^+$ currents. Furthermore, inhibition of voltage-activated $Ca^{2+}$ currents fully explains the magnitude of GPCR-mediated presynaptic inhibition, indicating no essential involvement of exocytotic mechanisms in the downstream of $Ca^{2+}$ influx. Direct loadings of G protein ${\beta}{\gamma}$ subunit $(G{\beta}{\gamma})$ into the calyceal terminal mimic and occlude the inhibitory effect of a GPCR agonist on presynaptic $Ca^{2+}$ currents $(Ip_{Ca})$, suggesting that $G{\beta}{\gamma}$ mediates presynaptic inhibition by GPCRs. Among presynaptic GPCRs glutamate and adenosine autoreceptors play regulatory roles in transmitter release during early postnatal period when the release probability (p) is high, but these functions are lost concomitantly with a decrease in p during postnatal development.