• Title/Summary/Keyword: median filter based prediction

Search Result 6, Processing Time 0.018 seconds

An Edge-Based Adaptive Method for Removing High-Density Impulsive Noise from an Image While Preserving Edges

  • Lee, Dong-Ho
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.564-571
    • /
    • 2012
  • This paper presents an algorithm for removing high-density impulsive noise that generates some serious distortions in edge regions of an image. Although many works have been presented to reduce edge distortions, these existing methods cannot sufficiently restore distorted edges in images with large amounts of impulsive noise. To solve this problem, this paper proposes a method using connected lines extracted from a binarized image, which segments an image into uniform and edge regions. For uniform regions, the existing simple adaptive median filter is applied to remove impulsive noise, and, for edge regions, a prediction filter and a line-weighted median filter using the connected lines are proposed. Simulation results show that the proposed method provides much better performance in restoring distorted edges than existing methods provide. When noise content is more than 20 percent, existing algorithms result in severe edge distortions, while the proposed algorithm can reconstruct edge regions similar to those of the original image.

Lightweight video coding using spatial correlation and symbol-level error-correction channel code (공간적 유사성과 심볼단위 오류정정 채널 코드를 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.188-199
    • /
    • 2008
  • In conventional video coding, encoder complexity is much higher than that of decoder. However, investigations for lightweight encoder to eliminate motion prediction/compensation claiming most complexity in encoder have recently become an important issue. The Wyner-Ziv coding is one of the representative schemes for the problem and, in this scheme, since encoder generates only parity bits of a current frame without performing any type of processes extracting correlation information between frames, it has an extremely simple structure compared to conventional coding techniques. However, in Wyner-Ziv coding, channel decoding errors occur when noisy side information is used in channel decoding process. These channel decoding errors appear more frequently, especially, when there is not enough correlation between frames to generate accurate side information and, as a result, those errors look like Salt & Pepper type noise in the reconstructed frame. Since this noise severely deteriorates subjective video quality even though such noise rarely occurs, previously we proposed a computationally extremely light encoding method based on selective median filter that corrects such noise using spatial correlation of a frame. However, in the previous method, there is a problem that loss of texture from filtering may exceed gain from error correction by the filter for video sequences having complex torture. Therefore, in this paper, we propose an improved lightweight encoding method that minimizes loss of texture detail from filtering by allowing information of texture and that of noise in side information to be utilized by the selective median filter. Our experiments have verified average PSNR gain of up to 0.84dB compared to the previous method.

Experimental Validation of Crack Growth Prognosis under Variable Amplitude Loads (변동진폭하중 하에서 균열성장 예측의 실험적 검증)

  • Leem, Sang-Hyuck;An, Dawn;Lim, Che-Kyu;Hwang, Woongki;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.267-275
    • /
    • 2012
  • In this study, crack growth in a center-cracked plate is predicted under mode I variable amplitude loading, and the result is validated by experiment. Huang's model is employed to describe crack growth with acceleration and retardation due to the variable loading effect. Experiment is conducted with Al6016-T6 plate, in which the load is applied, and crack length is measured periodically. Particle Filter algorithm, which is based on the Bayesian approach, is used to estimate model parameters from the experimental data, and predict the crack growth of the future in the probabilistic way. The prediction is validated by the run-to-failure results, from which it is observed that the method predicts well the unique behavior of crack retardation and the more data are used, the closer prediction we get to the actual run-to-failure data.

Space-Time Quantization and Motion-Aligned Reconstruction for Block-Based Compressive Video Sensing

  • Li, Ran;Liu, Hongbing;He, Wei;Ma, Xingpo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.321-340
    • /
    • 2016
  • The Compressive Video Sensing (CVS) is a useful technology for wireless systems requiring simple encoders but handling more complex decoders, and its rate-distortion performance is highly affected by the quantization of measurements and reconstruction of video frame, which motivates us to presents the Space-Time Quantization (ST-Q) and Motion-Aligned Reconstruction (MA-R) in this paper to both improve the performance of CVS system. The ST-Q removes the space-time redundancy in the measurement vector to reduce the amount of bits required to encode the video frame, and it also guarantees a low quantization error due to the fact that the high frequency of small values close to zero in the predictive residuals limits the intensity of quantizing noise. The MA-R constructs the Multi-Hypothesis (MH) matrix by selecting the temporal neighbors along the motion trajectory of current to-be-reconstructed block to improve the accuracy of prediction, and besides it reduces the computational complexity of motion estimation by the extraction of static area and 3-D Recursive Search (3DRS). Extensive experiments validate that the significant improvements is achieved by ST-Q in the rate-distortion as compared with the existing quantization methods, and the MA-R improves both the objective and the subjective quality of the reconstructed video frame. Combined with ST-Q and MA-R, the CVS system obtains a significant rate-distortion performance gain when compared with the existing CS-based video codecs.

Non-destructive quality prediction of truss tomatoes using hyperspectral reflectance imagery (초분광 영상을 이용한 송이토마토의 비파괴 품질 예측)

  • Kim, Dae-Yong;Cho, Byoung-Kwan;Kim, Young-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.413-420
    • /
    • 2012
  • Spectroscopic measurement method based on visible and near-infrared wavelengths was prominent technology for rapid and non-destructive evaluation of internal quality of fruits. Reflectance measurement was performed to evaluate firmness, soluble solid content, and acid content of truss tomatoes by hyperspectral reflectance imaging system. The Vis/NIR reflectance spectra was acquired from truss tomatoes sorted by 6 ripening stages. The multivariable analysis based on partial least square (PLS) was used to develop regression models with several preporcessing methods, such as smoothing, normalization, multiplicative scatter correction (MSC), and standard normal variate (SNV). The best model was selected in terms of coefficient of determination of calibration ($R_c^2$) and full cross validation ($R_{cv}^2$), and root mean standard error of calibration (RMSEC) and full cross validation (RMSECV). The results of selected models were 0.8976 ($R_p^2$), 6.0207 kgf (RMSEP) with gaussian filter of smoothing, 0.8379 ($R_p^2$), $0.2674^{\circ}Bx$ (RMSEP) with the mean of normalization, and 0.7779 ($R_p^2$), 0.1033% (RMSEP) with median filter of smoothing for firmness, soluble solid content (SSC), and acid content, respectively. Results show that Vis / NIR hyperspectral reflectance imaging technique has good potential for the measurement of internal quality of truss tomato.

Low Complexity Video Encoding Using Turbo Decoding Error Concealments for Sensor Network Application (센서네트워크상의 응용을 위한 터보 복호화 오류정정 기법을 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hyuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • In conventional video coding, the complexity of encoder is much higher than that of decoder. However, as more needs arises for extremely simple encoder in environments having constrained energy such as sensor network, much investigation has been carried out for eliminating motion prediction/compensation claiming most complexity and energy in encoder. The Wyner-Ziv coding, one of the representative schemes for the problem, reconstructs video at decoder by correcting noise on side information using channel coding technique such as turbo code. Since the encoder generates only parity bits without performing any type of processes extracting correlation information between frames, it has an extremely simple structure. However, turbo decoding errors occur in noisy side information. When there are high-motion or occlusion between frames, more turbo decoding errors appear in reconstructed frame and look like Salt & Pepper noise. This severely deteriorates subjective video quality even though such noise rarely occurs. In this paper, we propose a computationally extremely light encoder based on symbol-level Wyner-Ziv coding technique and a new corresponding decoder which, based on a decision whether a pixel has error or not, applies median filter selectively in order to minimize loss of texture detail from filtering. The proposed method claims extremely low encoder complexity and shows improvements both in subjective quality and PSNR. Our experiments have verified average PSNR gain of up to 0.8dB.