• Title/Summary/Keyword: media clogging

Search Result 34, Processing Time 0.024 seconds

Clogging Potential in Constructed Vertical Flow Wetlands Employing Different Filter Materials for First-flush Urban Stormwater Runoff Treatment (도시 초기 강우유출수 처리를 위한 수직흐름습지에서 여재별 폐색 잠재성 분석)

  • Chen, Yaoping;Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • The function of vertical subsurface flow wetlands can potentially be reduced with time due to clogging and are often assumed to be occurring when ponding and overflow is observed during rainfall. To investigate their clogging potential, three pilot-scale vertical subsurface flow (VSF) wetland systems were constructed employing woodchip, pumice, and volcanic gravel as main media. The systems received stormwater runoff from a highway bridge for seven months, after which the media were taken out and divided into layers to determine the amount and characteristics of the accumulated clogging matters. Findings revealed that the main clogging mechanism was the deposition of suspended solids. This is followed by the growth of biofilm in the media which is more evident in the wetland employing woodchip. Up to more than 30% of the clogging matter were found in the upper 20 cm of the media suggesting that this layer will need replacement once clogging occurs. Moreover, no signs of clogging were observed in all the wetlands during the operation period even though an estimation of at least 2 months without clogging was calculated. This was attributed to the intermittent loading mode of operation that gave way for the decomposition of organic matters during the resting period and potentially restored the pore volume.

Evaluation of the Impact of Filter Media Depth on Filtration Performance and Clogging Formation of a Stormwater Sand Filter (강우유출수 모래 필터의 여과기능 및 폐색 현상에 대한 필터 여재 깊이의 영향 평가)

  • Segismundo, Ezequiel Q.;Lee, Byung-Sik;Kim, Lee-Hyung;Koo, Bon-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.36-45
    • /
    • 2016
  • Sand filters are widely used in infiltration systems to manage polluted urban runoff. Clogging, which is mainly caused by the deposition of sediments on the filter media, reduces the filter system's infiltration capacity, which further limits its lifespan and function. The physical, chemical and biological clogging characteristics of sand filter, therefore, need to be known for effective design and maintenance. Physical clogging behavior and variations in the characteristics of sand filters according to different media depths are examined in this paper. The variations were observed from laboratory column infiltration tests conducted in a vertical flow and fluctuating head condition. It can be seen that an increase in filter media depth results in a high sediment removal performance; however, it leads to a shorter lifespan due to clogging. In the choice of filter media depth to be used in field applications, therefore, the purpose of facilities as well as maintenance costs need to be considered. At all filter media depth configurations, premature clogging occurred because sediments of 100~250 μm clogged the top 15% of filter media depth. Thus, scrapping the top 15% of filter media may be suggested as the first operational maintenance process for the infiltration system.

Purification of Stream Water Quality by Using Rope Media Filter (끈상접촉산화시설을 이용한 하천수질정화)

  • Jung, Yong-Jun;Lim, Ki-Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.238-243
    • /
    • 2006
  • In order to improve the water quality of stream water, the facilities equipped with rope media filter have been examined as a part of national projects. This work may provide design and operating parameters from 2 years monitoring for 2 streams. Depending on the characteristics of streams, the flow rate into the facilities were shown different, where K stream was almost the same and D stream was less than 25% of design flow rate. Although the clogging of filter media was not observed during the operation, the removal of accumulated sludges was required for the stable operation. The removal efficiencies of BOD, SS, T-N and T-P for D stream were 60.5%, 80.1%, 25.2% and 36.2%, respectively. The most important factor for the construction of stream water purification facilities was recommended for the selection of proper sites.

Verification of the Filter Media Applied to Filter Type Facility Considering the Treatment Efficiency Factor (여과형 시설에 적용되는 여재의 처리효율 영향인자를 고려한 실증화 평가)

  • Kim, Taeyoon;Lee, Junebae;Lee, Dongwoo;Shin, Hyunsuk;Kim, Hyunchul;Kwon, Soonchul
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.572-579
    • /
    • 2017
  • Increased impervious surface caused by rapid urbanization serves to produce the discharge of non-point source pollutants such as total suspended solid (TSS). There exist various methods of removing TSS, including a filtration process using granular media (a well-known method to be practically used after the consideration of removal efficiency, clogging, and backwashing efficiency). To determine the TSS removal capability of the filter, we initially performed lab-scale experiments which assessed flow rates, influent concentrations, permeability co-efficients, the particular shapes of suspended solids and potential clogging, and also evaluated TSS removal efficiency when applied to filtration facility in a pilot-scale. In low filtration flux condition, the removal efficiency of suspended solids was more than 95 %, while decreased to 83% in high filtration flux. Regarding the clogging aspect of the experiment, total cumulative solids were loaded up to $19.15kg/m^2$, and TSS removal efficiency was noted to commence to decrease when the loaded solids exceeded $9.0kg/m^2$. It was also noted, however, that superior efficiency was maintained for six hours. In addition, for pilot-scale experiment, the removal efficiency was still high enough (83.4 %) for the solid concentration of 140 ~ 343 mg SS/L and after backwashing, head loss was recovered to 92 ~ 95 % during two hour filtration. With these results, It was confirmed that lifetime of the filter applied to the test was prolonged due to the high treatment efficiency and good backwashing efficiency for the cumulative solids load.

Effects of the Ratio of Diatoms Length to the Effective Size of Filter Medium on Filter Clogging (규조류의 크기와 여재의 유효경이 여과지 폐색에 미치는 영향)

  • Jun, Hang-Bae;Lee, Young-Ju;Lee, Byung-Du;Ahn, Chang-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • The effects of the ratio of effective size of filter media and diatom size on filter run time were evaluated by using both reported data and experimental results from several water treatment plants. For single media at several WTPs, the range of probability of the filter run time less than 15hr was 10~60%, and for dual media, that of the filter run time less than 30hr was 10~20%. The major filter clogging algae was Synedra acus of which dominant ratio was in the range of 64~92%. The effective size(ES) of filter medium for dual media filter was 0.71~1.40mm and uniformity coefficient of the filter was 1.25~1.67. The effective size(ES) of filter medium for single medium filter was 0.52~0.65mm and uniformity coefficient of the filter was 0.25~1.40. The range of calculated penetration depth was 2.58~15.4cm for dual media and 1.29~2.17cm for single media, and average filter run time was 40.1~83.3hr and 13.9~34.9hr, respectively. When Synedra counts were over 400cells/ml for single media, filter run time was below 5hr, while filter run time for dual media filter, remained as high as 70hr.

  • PDF

Development of pre-treatment for the injection water into the aquifer storage and recovery(ASR) in Korea: The two-step rapid filter to reduce physical clogging and secure the volume of the injected water (지하저수지(ASR) 유입수 전처리기법 개발: 물리적 폐색 저하 및 수량공급원활을 위한 2 단계 급속여과지)

  • Park, Byeong-Joo;Do, Si-Hyun;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.337-345
    • /
    • 2015
  • Two step rapid filter system as a pre-treatment for the injected water into aquifer storage and recovery (ASR) in Korea was developed to reduce physical blockage and secure the volume of the injected water. First, single rapid sand filters with three different media sizes (0.4~0.7, 0.7~1.0 and 1.0~1.4 mm) were tested. Only two sizes (0.4~0.7 and 0.7~1.0 mm) satisfied target turbidity, below 1.0 NTU. However, they showed the fast head loss. To prevent the fast head loss and secure the volume of the injected water, a rapid anthracite filter with roughing media size (2.0~3.4 mm) were installed before a single rapid sand filter. As results, both the target turbidity and reduction of head loss were achieved. It was determined that the media size for a rapid sand filter in two step rapid filter system (i.e. a rapid anthracite filter before a rapid sand filter) was 0.7~1.0 mm. In addition, the effects of coagulant doses on the removal of natural organic matter (NOM), which might cause a biological clogging, were preliminarily evaluated, and the values of $UV_{254}$, dissolved organic carbon (DOC) and SUVA were interpreted.

A Study on a Fixed Bed Biofilm Process Using Porous Glass Media (다공성(多孔性) 유리메디아를 이용한 고정상(固定床) 생물막법(生物膜法)에 관한 연구(硏究))

  • Yoon, Tae Il;Kim, Jae Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.112-120
    • /
    • 1996
  • In this study, the porous glass media was utilized as biomass carrier, and the optimum characteristics of this new media in fixed bed biofilm process were investigated. The characteristics of media considered here are a void volume fraction, a specific surface area, and surface characteristics of media. The effect of surface roughness and material could be clearly demonstrated by the fact that the porous glass media showed a good potential for biofilm development. This might results from the fact that biofilm is initially formed in the surface cavities of the media is protect from the shear effect. Therefore, the microcolonies are not readily detached by the fluid shear. In the steady state, biofilm formation along the packing bed depth was different from media to media. The specific area was also an important factor for the attachment of microorganism on the media surface. The specific area was also an important factor for the attachment of microorganism on the media surface. In the case of porous glass media, about $100m^2/m^3$ was enough to obtain a good organic removal efficiency The organic removal efficiency could be improved by increasing the void volume fraction in the reactor, at least 80% was required to obtain a high removal efficiency and prevent clogging. From the analysis of kinetics study, the yield coefficient, Y, was 0.42 mgMLSS/mgSBOD, endogenous respiration coefficient, ke, was $0.12day^{-1}$ and substrate removel coefficient of Mckinney. km, was $16.8hr^{-1}$ for the porous glass media G-2

  • PDF

A Study on the Design Factors of the Cylinder-Shaped Filter for Improving Reservoir Water Quality (호소수질 개선을 위한 원통형 여과장치의 설계요소 연구)

  • Lee, Sun-Ho;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.655-662
    • /
    • 2009
  • In order to obtain knowledge on the design and operation of practical?scale Cylinder-Shaped Filters, pilot experiments were conducted to observe the effects of stepwise augmentation of production rate on water quality and clogging. A production rate increase from 0.8 L/min to 2.4 L/min did not appear to affect the removal efficiencies of BOD(Biochemical Oxygen Demand), SS(Suspended Solids), and turbidity, as the values were maintained around 80%, over 95%, and over 90% respectively;however, COD(Chemical Oxygen Demand) removal decreased from 44% to 29%. In addition, results indicated an inverse relationship between production rate and detention time required to remove unit contaminant concentration, the observed detention time in the filter to remove 1 mg-COD/L being 83 minutes for the production rate of 0.8 L/min and 45 minutes for the production rate of 2.4 L/min, suggesting that a relatively higher production rate is likely to be more advantageous in the purification of reservoir water when compared to a lower production rate. Clogging was observed to originate from the surface and advance to the center of the filter, and although clogging seemed to increase as the production rate increased, this did not cause any difficulties in normal functioning of the filter for more than 2 years of operation, suggesting that this filter system can be used effectively in the purification of reservoir water.

Effects of Media Breakage on Infiltration Characteristics in Stormwater Management System (강우유출수 처리시설 침투특성에 대한 필터여재 파쇄의 영향)

  • Segismundo, Ezequiel Q.;Koo, Bon-Hong;Kim, Lee-Hyung;Lee, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • For sand and zeolite filter media in stormwater BMPs, media breakage effects on infiltration were investigated. Compaction effort and infiltration force were mainly examined for breakage sources. The 1-D column infiltration tests for un-compacted and compacted media filters were conducted to investigate the breakage effect on infiltration. As a result, the following findings were deduced: 1) particle breakage due to filtration forces was found to be relatively minimal; 2) un-compacted media had lesser amount of crushed particles and permeability fluctuations compared to compacted media; 3) even without the presence of suspended solids in the influent, reduction in permeability was found, which resulted from rearrangement and re-entrainment of media particle itself; 4) only media particle breakage resistance is considered, sand was revealed to have better performance compared to zeolite media.

Effect of Hydrophilic- and Hydrophobic-Media on the Fermentative Hydrogen Production in Trickling Bed Biofilter (생물학적 수소생산을 위한 Trickling Bed Biofilter에서의 친수성과 소수성 담체의 영향)

  • Jeon, Byung-Seung;Lee, Sun-Mi;Kim, Yong-Hwan;Chae, Hee-Jeong;Sang, Byoung-In
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.465-469
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and tested for hydrogen production via anaerobic fermentation of sucrose. Each reactor consisted of a column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed with changing flow rate into the capped reactor, hydraulic retention time and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% for all conditions tested. Hydrogen production rates increased up to $10.5 L{\cdot};h^{-1}{\cdot}L^{-1}$ of reactor when influent sucrose concentrations and recycle rates were varied. Hydrophobic media provided higher value of hydrogen production rate than hydrophilic media at the same operation conditions. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate and butyrate. The reactor filled with hydrophilic media became clogged with biomass and bio gas, requiring manual cleaning of the system, while no clogging occurred in the reactor with hydrophobic media. In order to make long-term operation of the reactor filled with hydrophilic media feasible, biofilm accumulation inside the media in the reactor with hydrophilic media and biogas produced from the reactor will need to be controlled through some process such as periodical backwashing or gas-purging. These tests using trickling bed biofilter with hydrophobic media demonstrate the feasibility of the process to produce hydrogen gas in a trickle-bed type of reactor. A likely application of this reactor technology could be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  • PDF