• Title/Summary/Keyword: medaka

Search Result 118, Processing Time 0.02 seconds

Several Human Pharmaceutical Residues in Aquatic Environment may Result in Endocrine Disruption in Japanese Medaka(Oryzias latipes)

  • Kang, Hee-Joo;Kim, Hyun-Soo;Choi, Kyung-Ho;Kim, Kyung-Tae;Kim, Pan-Gyi
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.3
    • /
    • pp.227-233
    • /
    • 2005
  • This study was conducted to determine the endorcrine disruption effects of the several major pharmaceutical residues in water using adult Japanese medaka (Oryzias latipes). Four frequently used pharmaceuticals including caffeine, ketoconazole, acetaminophen, and diltiazem were investigated for the vitellogenin(Vtg) induction in the medaka using Western blotting and ELISA. $17\beta$,-estradiol was used as a positive control. Vtg was qualified and quantified through Western blot and ELISA. Following SDS gel electrophoresis, the dominant protein band was identified to molecular weight approximately 205 kDa in whole body samples of vitellogenic female. With female medaka exposed to $17\beta,-estradiol$, no significant difference in total protein induction was noted. In contrast, three to five day exposure of male fish to $17\beta,-estradiol$ resulted in $63.07\%o$, increase of total protein comparing to that of control males (p<0.01). Vtg induction in male fish was observed with all the test pharmaceuticals: At concentrations greater than 1ppm of diltiazem, 2 ppm of caffeine, 4 ppm of acetaminophen, and 10 ppm of ketoconazole, Vtg induction was monotonously increased in a dose dependent manner. This study is one of the first reports suggesting potential endocrine disruption mechanism of common human pharmaceutical products in aquatic ecosystem. Although the effect concentrations obtained from this investigation are environmentally unrealistically high, endocrine disruption should be considered as one of the important consequences of pharmaceutical pollution in aquatic environment, and warrants due attention in future researches.

Changes in Stanniocalcin-2 and Hypoxia-Inducible Factor-1α mRNA Expression in Medaka Oryzias dancena Exposed to Acute Hypoxia (저산소환경에 의한 송사리(Oryzias dancena)의 Stanniocalcin-2와 Hypoxia-Inducible Factor-1α mRNA 발현의 변화)

  • Shin, Ji Hye;Sohn, Young Chang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • Some fish live in aquatic environments with low or temporally changing $O_2$ availability. Variation in dissolved oxygen (DO) levels requires behavioral, physiological, and biochemical adaptations to ensure the uptake of sufficient $O_2$. Several species are relatively well adapted to tolerate low $O_2$ partial pressures (hypoxia). The medaka (Oryzias dancena ) is an important model organism for biomedical research that shows remarkable tolerance to hypoxia. We investigated the regulation and role of hypoxia-inducible factor-1 (HIF-$1{\alpha}$) as a general hypoxia-response gene and stanniocalcin-2 (STC2), which is one of the genes regulated by HIF-$1{\alpha}$ in mammals under hypoxia. We subjected adult male medaka to the following three acute hypoxia regimes: 1, 24, and 72 h at DO = $1.8{\pm}0.5$ ppm. The changes in STC2 and HIF-$1{\alpha}$ mRNA were monitored using quantitative real-time reverse-transcription PCR. We found strong upregulation of HIF-$1{\alpha}$ mRNA in the livers of fish exposed to hypoxia. Hypoxia rapidly upregulated STC-2 mRNA expression in muscle, but not in the brain, gills, liver, or intestine. Therefore, unlike in mammals, hypoxia might regulate O. dancena STC-2 expression in an HIF-$1{\alpha}$-independent manner.

Study on Anti-estrogenic Activity of DEHP as an Endocrine Disruption Chemical (내분비 교란성 DEHP의 항-에스트로젠 활성에 관한 연구)

  • Kim, Eun-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.7-15
    • /
    • 2003
  • Di-2-ethylhexyl phthalate (DEHP), is a widely used plasticizer known to be a suspected endocrine disrupter, but its exact effects on aquatic organisms are not yet known. When Japanese medaka (Oryzias latipes) were exposed from the time of hatching to 3 months of age to an aqueous DEHP solution at nominal concentrations of 1, 10, and 50 $\mu\textrm{g}$/l, DEHP treated female fish showed distinct reproductive effect. And the midge (Chironomus riparius.). an aquatic invertebrate, was exposed to DEHP to evaluate the effects on reproductive processes via sediment toxicity. The test endpoints included emergence, sex ratio, fecundity, and the viability of F1 offspring egg ropes. The result implied that the normal developmental and/or reproductive processes in C. riparius had been disrupted when exposed to DEHP, the effect also being displayed in the next generation. In summary, DEHP hinders the development of reproductive organs in the female Japanese medaka and C. riparius.

Effects of Bisphenol A on Sex Differentiation and Gonadal Development of Medaka, Oryzias latipes

  • Na, Oh-Soo;Lee, Young-Don;Baek, Hea-Ja;Kim, Hyung-Bae
    • Animal cells and systems
    • /
    • v.6 no.1
    • /
    • pp.75-80
    • /
    • 2002
  • A study on the effects of bisphenol A (BPA) on sex differentiation and gonadal development in medaka, Oryzias latipes, was investigated by histological examination. The fish were exposed to aqueous solutions of BPA at nominal concentrations of 50, 100, and 200 $\mu\textrm{g}$/L from newly-hatched larvae stage to 70 d. The ovaries of female fish were composed of oocytes at the chromatin nucleolus and peri-nucleolus stages at 20 d after the exposure. The testes contained a number of spermatogonia and spermatocytes at 30 d. In the process of sex differentiation. gonadal development was not different in all experimental groups until 30 d after the exposure. At 70 d after the exposure, however, advanced development of oocytes in the ovary and inhibition of spermatogenesis in the testis were observed in the BPA-treated groups compared to the non-treated controls. More females than males were identified in the 50 and 100 $\mu\textrm{g}$/L BPA-treated groups, in comparison to the 200 $\mu\textrm{g}$/L BPA-treated group and non-treated controls. Medaka exposed to 200 $\mu\textrm{g}$/L BPA were bigger compared to other experimental groups. The present study suggests that BPA may lead to problems in either mating or sexual behavior due to the difference in growth and disparity of sexual maturation between male and female fish.

Transgene chgH-rfp expression at developmental stages and reproductive status in marine medaka (Oryzias dancena)

  • Cho, Young Sun;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.9
    • /
    • pp.41.1-41.7
    • /
    • 2016
  • Background: The transgenic approach using estrogen-responsive regulator in fish has been given much attention as a potential means to detect and/or address estrogen-related aquatic pollutions. In order to address the development stage- and reproduction status-dependent expression patterns of the chgH-rfp transgene (red fluorescent protein transgene driven by choriogenin H promoter) in marine medaka Oryzias dancena, naturally occurring red fluorescent protein (RFP) signals under non-exposed conditions as well as the transgenically induced RFP signals under estrogen-exposed conditions were assayed. Results: Female transgenics begun to show naturally occurring RFP signals from the age of 7 weeks post hatching (WPH) without experimental estrogen exposure. Afterward, these RFP signals in female transgenics became robust with the progress of ovarian maturation. On the other hand, male transgenics did not show any naturally occurring RFP signal under non-exposed conditions irrespective of developmental stages and maturation statue. Upon exposures using estradiol-$17{\beta}$ (E2) and $17{\alpha}$-ethinylestradiol (EE2), RFP signals were significantly induced specifically in the livers of transgenic males. Conclusions: Male chgH-rfp transgenics were able to keep the "off" state of RFP expression during their entire life cycle unless exposed to exogenous estrogens. Owing to their tight regulation capability of estrogen-responsive transgene, transgenesis of chgH-rfp in male marine medaka could offer a useful model system for future ecotoxicogenomic studies regarding estrogenicity-related issues in aquatic and marine environments.

Comparative Analysis of Transgene Copy Numbers and Expression Characteristics across Multiple Transgenic Marine Medaka Oryzias dancena Strains carrying the β-Actin Promoter-Driven GFP Reporter

  • Cho, Young Sun;Lee, Sang Yoon;Vu, Nguyen Thanh;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.183-193
    • /
    • 2015
  • Several transgenic marine medaka Oryzias dancena strains harboring a green fluorescent protein (GFP) reporter construct regulated by an endogenous ${\beta}$-actin promoter were established and their expression characteristics in relation to transgene copy numbers were examined in 21 transgene genotypes. Most of the transgenic strains displayed transgene insertion patterns typical of microinjection-mediated introduction of foreign DNA into fish embryos, characterized by the random integration of multiple transgene copies (ranging from 1 - 282 copies per cell), often accompanied by the formation of concatemer(s), as assessed by genomic Southern blot hybridization analysis and qPCR. Transgenic strains showed ubiquitous and continued temporal and spatial expression patterns of the transgenic GFP during most of their life cycle, from the embryonic stage to adulthood, enabling assessment of the expression pattern of the endogenous ${\beta}$-actin gene. However, a comparative evaluation of transgene copy numbers and expression levels showed that copy number-dependent expression, the stability of the ubiquitous distribution and expression efficiency per transgene copy varied among the transgenic strains. Fluorescence expression levels were positively correlated with absolute transgene copy numbers, whereas the expression efficiency per transgene copy was inversely related to the number of transgene integrant copies. Data from this study will guide the selection of potentially desirable transgenic strains with ubiquitous expression of a fluorescent transgene, not only in this marine medaka species but also in other related model fish species.

Comparative Study of Growth and Gonad Maturation in Diploid and Triploid Marine Medaka, Oryzias dancena

  • Park, In-Seok;Gil, Hyun Woo;Lee, Tae Ho;Nam, Yoon Kwon;Kim, Dong Soo
    • Development and Reproduction
    • /
    • v.20 no.4
    • /
    • pp.305-314
    • /
    • 2016
  • The marine medaka, Oryzias dancena is a suitable sample as a laboratory animal because it has a small size and clearly distinguishes between female and male. Data on the growth and maturity of the diploid and triploid sea cucurbit species suitable for laboratory animals are very useful for studying other species. Triploidy was induced in the marine medaka by cold shock treatment ($0^{\circ}C$) of fertilized eggs for 45 min, applied two minutes after fertilization. The diploid and triploid male fish were larger than their female counterparts (P<0.05), and the concentrations of thyroid stimulating hormone (TSH) and thyroxine (T4) were higher in the induced triploids over 1 year (P<0.05). In both the diploid and tri-ploid groups the concentrations of TSH and T4 were higher in the male fish than in the females (P<0.05), while the testo-sterone and estradiol-$17{\beta}$ concentrations in the induced triploids were lower than in the diploids (P<0.05). The gonadosomatic index (GSI) of the triploid fish was lower than that for the diploids, and the GSI for females in each ploidy group were higher than that for the males. For both groups the GSI was highest at 4 months of age, and decreased thereafter to 12 months. Analysis of the gonads of one-year-old triploid fish suggested that the induction of triploidy probably causes sterility in this species; this effect was more apparent in females than in males.

Evaluation of visible fluorescent elastomer tags implanted in marine medaka, Oryzias dancena

  • Im, Jae Hyun;Gil, Hyun Woo;Park, In-Seok;Choi, Cheol Young;Lee, Tae Ho;Yoo, Kwang Yeol;Kim, Chi Hong;Kim, Bong Seok
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.9
    • /
    • pp.21.1-21.10
    • /
    • 2017
  • The aim of this study was to assess visible implant fluorescent elastomer (VIE) tagging and stress response in marine medaka, Oryzias dancena. The experimental fish were anesthetized individually and marked with red, yellow, or green elastomer at each of the following three body locations: (1) the abdomen, (2) the back, and (3) the caudal vasculature. During 12 months, the accumulated survival rates of fish in the experimental treatments were not different among red, yellow, and green elastomers. The experimental fish retained > 85% of the tags injected in the back, > 70% of the tags injected in the caudal vasculature, and > 60% of the tags injected in the abdomen (P < 0.05). An important observation was that the abdomen site was associated with poor tag retention. For all injected sites, the red and green tags were able to be detected more easily than the yellow tags when observed under both visible and UV lights. Tag readability was lower for the abdomen site than for the other sites (back and caudal vasculature). Thus, VIE tags were easy to apply to marine medaka (< 1 min per fish) and were readily visible when viewed under UV light.