• 제목/요약/키워드: mechanical vibration

검색결과 4,406건 처리시간 0.033초

스트레인 게이지 변위추정 센서를 사용한 유동공진 가진기 설계 (Vibration Exciter Design for Flow Resonance with a Displacement Estimator Using Strain Gage)

  • 남윤수;최재혁;강병하
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1874-1881
    • /
    • 2002
  • Heat dissipation technology using the flow resonant phenomenon is a kind of a new concept in the heat transfer area. A vibration exciter is needed to enhance air flow mixing which has the natural shedding frequency of thermal system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator with a displacement estimator using strain gage. An analytical dynamic model for this mechanical vibration exciter is presented and its validity is checked by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, the vibration exciter using strain displacement estimator is developed. During the experimental verification phase, it turns out the high modal resonant characteristics of a vibrating plate are a major barrier against obtaining a high bandwidth vibration exciter.

진동 특성을 고려한 자동차 냉각모듈 방진고무의 내구성 평가 (Evaluation for Fatigue Life of Rubber Isolator for Vibration Characteristic on Automotive Cooling Module)

  • 심희진;김한철;김정규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.350-355
    • /
    • 2008
  • A Rubber mount is widely used for mechanical parts or engineering materials. Especially, it plays an important role in reducing mechanical vibration due to cyclic loading. But, rubber mount is damaged due to the cyclic loading and resonance. Therefore, it is necessary to investigate evaluation of fatigue life considering vibration characteristics for rubber. In this study, a vibration fatigue analysis was performed and based on Power Spectral Density(PSD) and the stress-life curve and a result of frequency response analysis in the finite element method. The measured load history in experiment was transformed to PSD curve. The stress-life curve was obtained by nonlinear static analysis and fatigue test. In addition, frequency response analysis was conducted for mechanical part. In order to evaluate fatigue life of rubber mount, vibration fatigue test was conducted at the constant acceleration-level as well. Fatigue life was determined when the load capacity is reduced to 60% of its initial value. As a result, predicted fatigue life of rubber mount agreed fairly well with the experimental fatigue life.

  • PDF

COG 본딩공정 고속복합 검사 시스템의 방진용 에어 스프링의 동적 파라미터 규명 연구 (Dynamic Parameters Identification of an Air Spring for Vibration Isolation of a Complex Testing System of COG Bonding Process)

  • 이주홍;김필기;석종원;오병준
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.13-20
    • /
    • 2010
  • Due to the recent quantum leaps forward in bio-, nano-, and information-technologies, the precisionization and miniaturization of mechanical and electrical components are in high demand. The allowable margin for vibration limits for such equipments is becoming stricter. In order to meet this demand, understandings on the characteristics of vibration isolation systems are highly required. Among the components comprising the vibration isolation system, air spring has become a focal point. In order to develop a complex defect tester for COG bonding of display panels, a vibration isolation system composed of air springs for mounting is considered in this study. The dynamic characteristics of the air spring are investigated, which is the most essential ingredient for reducing the vibration problem of the tester to the lowest level. Uncoupled dynamic parameters of the air spring are identified through MTS experiments, followed by suggestion of a model-based approach to obtain the remaining coupled dynamic parameters. Finally, the dynamic behaviors of the air spring are estimated and discussed.

발전소 대형 입형펌프 전동기의 전류/진동신호 특성 분석 (Current and Vibration Characteristics Analysis of Induction Motors for Vertical Pumps in Power Plant)

  • 배용채;이현;김연환
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.404-413
    • /
    • 2006
  • Induction motors are the workhorse of our industry because of their versatility and robustness. The diagnosis of mechanical load and power transmission system failures is usually carried out through mechanical signals such as vibration signatures, acoustic emissions, motor speed envelope. The motor faults including mechanical rotor imbalances, broken rotor bar, bearing failure and eccentricities problems are reflected in electric, electromagnetic and mechanical quantities. The recent research has been directed toward electrical monitoring of the motor with emphasis on inspecting the stator current of the motor, The stator current spectrum has been widely used for fault detection in induction motor systems. The motor current signature analysis is the useful technique to assess machine electrical condition. This paper describes the motor condition detected by the current signatures Paralleled with vibration signatures analysis of induction motors with the roller bearing and the journal bearing type for large vertical pumps in power plant as examples to discuss for motor fault detection and diagnosis.

소형 MR 댐퍼의 모델링 및 진동제어 (Modeling and Vibration Control of Small-sized Magneto-rheological Damper)

  • 이종우;성민상;우제관;최승복
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1121-1127
    • /
    • 2012
  • This paper presents a new small-sized damper featuring magneto-rheological(MR) fluid which can be applied to vibration control system. The proposed MR damper consists of cylinder, piston, a couple of bearings, oil-seals and magnetic circuit which has two coils. In this damper, approximately 5cc of MR fluid is used. The damping force of the MR damper is designed to be followed by linear shear-mode Bingham-plastic model. In order to verify the performance of the MR damper, an experimental apparatus is established. In the experimental test, the damping force of the MR damper is measured with respect to time, displacement and velocity. In addition, the time response of MR damper is measured when 1A of step current is applied. Finally, the proposed small MR damper is applied to vibration control. In this process, a simple 1-DOF system is modeled and controlled using PID controller.

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.

Vibration control of active magnetic bearing systems using digital signal processor

  • Shimomachi, T.;Fukata, S.;Kouta, Y.;Ishimatsu, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1178-1183
    • /
    • 1990
  • A digital signal processor(DSP) is applied to realizing a compensator of control system of active magnetic bearings, to restrict a resonance caused by the first-order bending vibration of a flexible rotor, and to run the rotor beyond the critical speed. A full-order observer is applied to the translatory rotor-motion with the first-order vibration mode. A PID control is used for the conical motion. The rotor used in the experiments is symmetric, and an electromagnet and a displacement sensor are set in collocation.

  • PDF

Mechanical behavior of composite gel periodic structures with the pattern transformation

  • Hu, Jianying;He, Yuhao;Lei, Jincheng;Liu, Zishun;Swaddiwudhipong, Somsak
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.605-616
    • /
    • 2014
  • When the periodic cellular structure is loaded or swelling beyond the critical value, the structure may undergo a pattern transformation owing to the local elastic instabilities, thus leading to structural collapse and the structure changing to a new configuration. Based on this deformation-triggered pattern, we have proposed the novel composite gel materials. This designed material is a type of architectural material possessing special mechanical properties. In this study, the mechanical behavior of the composite gel periodic structure with various gel inclusions is studied further through numerical simulations. When pattern transformation occurs, it results in a different elastic relationship compared with the material at untransformed state. Based on the obtained nominal stress versus nominal strain behavior, the Poisson's ratio and corresponding deformed structure patterns, we investigate the performance of designed composite materials and the effects of the uniformly distributed gel inclusions on composite materials. A better understanding of the characteristics of these composite gel materials is a key to develop its potential applications on new soft machines.

EXPERIMENTAL STUDIES ON SOME VIBRATION ISOLATIORS DEVELOPED FOR POWERED KNAPSACK SPRAYER

  • Sahota, M.S.;Bansal, A.S.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.246-255
    • /
    • 1993
  • The paper presents the experimental studies on the effectiveness of some vibration isolators developed for reducing transmission of vibration from the powered knapsack sprayer to the back and shoulders of the operator. A test rig was used to conduct detailed experimental studies on the powered knapsack sprayer mounted on it and fitted with different vibration isolators. Structural features of vibration isolators have been presented and their effectiveness of isolating transmission of vibration, from the engine-blower of the sprayer to its main frame and the operator, has been presented and discussed. Vibration measurements and analyses made by using B & K equipment have proved that the vibration isolators are quite effective in reducing the vibration transmission. The operators felt much less discomfort when they used the sprayer fitted with the isolators developed for the purposes, as compared to the existing arrangement.

  • PDF

A Study on the Analysis vibration of fluid flow in ECV

  • WANGWENHAI, WANGWENHAI;Cho, Haeng Muk
    • 에너지공학
    • /
    • 제24권2호
    • /
    • pp.115-119
    • /
    • 2015
  • Pipe vibration caused great threat to the safety in production. Strong pipeline vibration will line accessories, especially the joints and pipe fittings etc. pipe joints loosening and rupture, causing serious accidents. By the action of the compressor constant fluid flow within the pipe, this process produces pulsating fluid flow may cause vibration of the pipe, thereby reducing the efficiency of the pipeline, structural vibration induced fatigue, thereby resulting in even piping structural damage. This paper studies on the vibration problems caused by fluid, by analyzing the causes of pipeline vibration and factors affecting pipeline vibrations, FEM (Finite Element Method) analysis of modal and enforced vibration.