• 제목/요약/키워드: mechanical spring

검색결과 1,050건 처리시간 0.021초

점성 유체중에 자유낙하 하는 니들과 스프링의 거동에 관한 연구 (STUDY ON THE BEHAVIOR OF NEEDLES AND SPRINGS FALLING FREELY IN A VISCOUS FLUID)

  • 고담;서용권
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.30-39
    • /
    • 2014
  • We report in this paper the analysis of the motion of a needle and a spring in a viscous fluid under the influence of gravitational force. Lateral shift as well as vertical motion of a needle falling in a viscous fluid has been observed from a simple experiment. We also observed the combined rotation and translation of a falling spring. The trajectory and velocity of the falling needle and the spring were obtained by using an image processing technique. We also conducted numerical simulation for both problems. For the falling-needle problem, we employed a theory; but it turns out that significant correction is required for the solutions to match the numerical and experimental data. For the falling spring problem various theoretical formula were tested for their justification, but none of the existing theories can successfully predict the numerical and experimental results.

철도차량용 고무스프링 특성해석 및 평가 (Finite Element Analysis and Evaluation of Rubber Spring for Railway Vehicle)

  • 우창수;김완두;최병익;박현성;김경식
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.773-778
    • /
    • 2009
  • Chevron rubber springs are used in primary suspensions for rail vehicle. Chevron rubber spring have function which reduce vibration and noise, support load carried in operation of rail vehicle. Prediction and evaluation of characteristics are very important in design procedure to assure the safety and reliability of the rubber spring. The computer simulation using the nonlinear finite element analysis program executed to predict and evaluate the load capacity and stiffness for the chevron spring. The non-linear properties of rubber which are described as strain energy functions are important parameters. These are determined by material tests which are uniaxial tension, equi-biaxial tension and shear test. The appropriate shape and material properties are proposed to adjust the required characteristics of rubber springs in the three modes of flexibility.

고압 회로차단기의 비등속 회전 캠의 최적설계 (Optimal Design of a Variable-Speed Cam for Power Circuit Breaker)

  • 김준형;안길영;김수현;곽윤근
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.47-53
    • /
    • 2001
  • Power Circuit Breaker uses a variable-speed cam mechanism actuated by pre-loaded spring force. This paper presents the optimal design procedure for a variable-speed cam mechanism based on the dynamic model of a complete spring-actuated cam system. The optimal cam is compared with an original cam. Simulation results show that the dynamic behaviors of the designed cam are superior to those of the original cam.

  • PDF

압축기-연소실 일체형인 리니어엔진의 스프링 강성에 따른 연소 및 동적 특성 연구 (The Experimental Research for the Combustion and Dynamic Characteristics of the Linear Engine on the Variable Spring Stiffness)

  • 이재완;오용일;김강출;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.619-627
    • /
    • 2012
  • This study was experimentally investigated on the effects of spring stiffness applied to linear compressor chambers. The springs prevented piston head from colliding with engine cover, stored the kinetic energy and regenerated the kinetic energy. The linear engine has two combustion chambers and four compressor chamber. The combustion chamber bore size was 30 mm, maximum stroke was 31 mm and effective stroke volume was 25.45 cc respectively. The spring stiffness was varied such as 0, 0.5, 1.00, 2.9 and 14.7 N/mm. The linear engine was fueled with premixed LPG (propane 99%) and air by pre-mixture device. As an experimental result, The stroke, piston velocity and the piston frequency were increased by high spring stiffness. Also, thermal efficiency was grown. because the increased stroke made the higher compression ratio. In conclusion, electric power and efficiency were improved.

두께가 얇은 냉간단조품의 스프링백 거동 및 저감설계 (Behavior and Reduction of Spring-back in a Thin Cold-Forged Product)

  • 김대원;신영철;최호준;윤덕재;이근안;김연구;임성주
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.397-402
    • /
    • 2012
  • The flange hub is a main component in an automotive steering system. In general, the flange hub are fabricated by mechanical machining, which is a process where material waste is inevitable. It is well-known that a net-shape cold forging cannot only reduce material waste but can also improve the mechanical strength of the final product. Thus, a forging process design was conducted for production of a flange hub. Significant spring-back occurs around the flange due to its small thickness in conjunction with the residual stresses after forging. In order to achieve the required dimensional accuracy, a process design with appropriate spring-back control is needed. In this study, a modification of the forging die was designed based on FE analysis with the purpose of spring-back compensation. Four kinds of different die designs were evaluated and the optimum design has two times less spring-back than the initial design. The compensation angle of the optimum design is 0.5 degrees. The results have been experimentally confirmed by cold forging of a flange hub and comparing the amount of spring-back between the actual component and the FE analysis.

자동차 클러치 다이어프램 스프링의 유한요소해석 및 최적설계 (Finite Element Analysis and Optimal Design of Automobile Clutch Diaphragm Spring)

  • 이춘열;채영석;권재도;남욱희;김태형
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1616-1623
    • /
    • 2000
  • A diaphragm spring is an important component of a clutch assembly, characteristics of which depends largely on that of a diaphragm spring. A diaphragm spring is subject to high stress concentration in driving condition, which frequently causes cracks and fracture around finger area. In this paper, behavior of a diaphragm spring is analysed by finite element method to calculate sensitivity of design parameters, which is used to perform optimal design of diaphragm spring shape. As an object function, hoop stresses are taken and minimized to improve durability. Characteristics of the diaphragm is used as equality constraint to maintain the original design purpose and sequential linear programming(SLP) is utilized as an optimization tool. With optimized design, it is verified that concentrated stress is decreased maintaining release load characteristic.

질량/스프링 계를 고려한 리니어 왕복 액추에이터 시스템의 등가 임피던스 모델링과 주파수 특성 해석 (Equivalent Impedance Modelling and Frequency Characteristic Analysis of Linear Oscillatory Actuator System Considering Mass/spring System)

  • 정상섭;장석명
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권7호
    • /
    • pp.370-378
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and spring is one approach to safeguarding the structure against excessive vibrations. In this paper, the lumped electrical circuit approach of mass/spring system is used to model the mechanical aspects according to the frequency. Therefore, the mass/spring system can be dealt with here and linked with the equivalent circuit of electric linear oscillatory actuator(LOA). Analysis models are two types of vibration control system, active mass damper(AMD) and hybrid mass damper(HMD). AMD consists of the moving coil LOA with mass only The LOA of HMD with mass and spring is composed of the fixed coil and the movable permanent magnet(PM) field part. The PM field part composed magnet modules and iron coke, is the damper marts itself. We Present the motional resistance and reactance of mass/spring system and the system impedance of AMD and HMD according to the frequency.

CFD 해석을 이용한 판형 체크 밸브에 대한 스프링 강성의 설계 기준 (Design Criteria of Spring Stiffness for Pan Check Valve Using CFD Analysis)

  • 박주용;백석흠;강정호
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.49-55
    • /
    • 2014
  • This paper examines the effects of spring characteristics and stiffness in relation to the characteristics of hydrodynamic force. Spring forces and stiffness determine the performance of this type of pan check valve and have an effect on the overall operation. The hydraulic efficiency of the pan check valve is relatively low compared to that of a common check valve. However, a pan check valve is structurally more stable than a common check valve. We implemented the optimum design to increase the flow rate and to resolve the suppression of the pressure drop according to the extent of the compression of the spring. From the results of a flow analysis, we demonstrate spring stiffness design criteria depending on the extent of the compression of the spring of pan check valve acting on the fluid at the inlet 1 MPa pressure.

웻지를 이용한 3축 방향 디스크 스프링 댐퍼에 관한 연구 (Three Axis Disk Spring Damper Containing Wedge System)

  • 최명진;정지원
    • 한국가스학회지
    • /
    • 제13권6호
    • /
    • pp.1-8
    • /
    • 2009
  • 본 연구는 웻지 시스템을 이용하여 3축 방향의 진동 및 충격을 완화시킬 수 있는 감쇠기에 관한 것이다. 기존의 수직방향 진동/충격에 대해서만 흡진하는 디스크 스프링 완충기를 개선하여 웻지를 추가함으로써 종 방향은 물론 횡 방향을 모두 포함한 3축에 대해 흡진이 가능한 댐퍼를 제안하였다. 수학적 모델을 수립하여, 댐퍼내의 중요한 요소로 작동하는 디스크 스프링과 웻지의 특성을 고찰하였으며, 실험을 통해 댐퍼의 거동을 고찰하였다. 수치 해석 결과와 실험 결과가 잘 일치함을 알 수 있었고, 소산된 에너지양을 구한 후, 수직 수평방향에 대한 등가 점성 감쇠를 구하였다.

  • PDF

Modified sigmoid based model and experimental analysis of shape memory alloy spring as variable stiffness actuator

  • Sul, Bhagoji B.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.361-377
    • /
    • 2019
  • The stiffness of shape memory alloy (SMA) spring while in actuation is represented by an empirical model that is derived from the logistic differential equation. This model correlates the stiffness to the alloy temperature and the functionality of SMA spring as active variable stiffness actuator (VSA) is analyzed based on factors that are the input conditions (activation current, duty cycle and excitation frequency) and operating conditions (pre-stress and mechanical connection). The model parameters are estimated by adopting the nonlinear least square method, henceforth, the model is validated experimentally. The average correlation factor of 0.95 between the model response and experimental results validates the proposed model. In furtherance, the justification is augmented from the comparison with existing stiffness models (logistic curve model and polynomial model). The important distinction from several observations regarding the comparison of the model prediction with the experimental states that it is more superior, flexible and adaptable than the existing. The nature of stiffness variation in the SMA spring is assessed also from the Dynamic Mechanical Thermal Analysis (DMTA), which as well proves the proposal. This model advances the ability to use SMA integrated mechanism for enhanced variable stiffness actuation. The investigation proves that the stiffness of SMA spring may be altered under controlled conditions.