• Title/Summary/Keyword: mechanical power

Search Result 7,593, Processing Time 0.038 seconds

Stability Characteristics of Supercritical High-Pressure Turbines Depending on the Designs of Tilting Pad Journal Bearings

  • Lee, An Sung;Jang, Sun-Yong
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • In this study, for a high-pressure turbine (HPT) of 800 MW class supercritical thermal-power plant, considering aerodynamic cross-coupling, we performed a rotordynamic logarithmic decrement (LogDec) stability analysis with various tilting pad journal bearing (TPJB) designs, which several steam turbine OEMs (original equipment manufacturers) currently apply in their supercritical and ultra-supercritical HPTs. We considered the following TPJB designs: 6-Pad load on pad (LOP)/load between pad (LBP), 5-Pad LOP/LBP, Hybrid 3-Pad LOP (lower 3-Pad tilting and upper 1-Pad fixed), and 5-Pad LBPs with the design variables of offset and preload. We used the API Level-I method for a LogDec stability analysis. Following results are summarized only in a standpoint of LogDec stability. The Hybrid 3-Pad LOP TPJBs most excellently outperform all the other TPJBs over nearly a full range of cross-coupled stiffness. In a high range of cross-coupled stiffness, both the 6-Pad LOP and 5-Pad LOP TPJBs may be recommended as a practical conservative bearing design approach for enhancing a rotordynamic stability of the HPT. As expected, in a high range of cross-coupled stiffness, the 6-Pad LBP TPJBs exhibit a better performance than the 5-Pad LBP TPJBs. However, contrary to one's expectation, notably, the 5-Pad LOP TPJBs exhibit a slightly better performance than the 6-Pad LOP TPJBs. Furthermore, we do not recommend any TPJB design efforts of either increasing a pad offset from 0.5 or a pad preload from 0 for the HPT in a standpoint of stability.

Design of acoustic meta-material silencer based on coiled up space (지그재그 구조 메타물질을 이용한 음향 소음기 설계)

  • Shim, Ki-Hwoon;Jang, Jun-Young;Kwon, Ho-Jin;Song, Kyungjun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper, we design an acoustic meta-material silencer that operates at low frequency to reduce noise in duct. A high refractive index meta-material silencer is demonstrated with a combination of zigzag structured thin waveguide and helmholtz resonator, which reduces the speed of sound. Finite Element Method (FEM) analysis via thermo-viscous acoustic mesh is performed in order to calculate thermo-viscous dissipation in sub-wavelength waveguide. Sound power reflection, transmission and absorption coefficients are obtained utilizing 4-Microphone Method. The results show that cut-off frequency and transmission loss can be controlled through adjusting intervals of the zigzag structures. A wide-band acoustic silencer is also suggested by connecting meta-materials in series or parallel.

Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory

  • Atmane, Redhwane Ait;Mahmoudi, Noureddine;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.95-107
    • /
    • 2021
  • In this work, the dynamic response of functionally graded beams on variable elastic foundations is studied using a novel higher-order shear deformation theory (HSDT). Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. The FG beams were assumed to be supported on Winkler-Pasternak type foundations in which the Winkler modulus is supposed to be variable in the length of the beam. The variable rigidity of the elastic foundation is assumed to be linear, parabolic and sinusoidal along the length of the beam. The material properties of the FG porous beam vary according to a power law distribution in terms of the volume fraction of the constituents. The equations of motion are determined using the virtual working principle. For the analytical solution, Navier method is used to solve the governing equations for simply supported porous FG beams. Numerical results of the present theory for the free vibration of FG beams resting on elastic foundations are presented and compared to existing solutions in the literature. A parametric study will be detailed to investigate the effects of several parameters such as gradient index, thickness ratio, porosity factor and foundation parameters on the frequency response of porous FG beams.

Control of the Longitudinal Instability by Symmetry Breaking in the Can Burner Simulating Annular Nozzle (환형노즐을 모사한 캔 연소기에서 Symmetry Breaking에 의한 종-방향 연소불안정성 제어 연구)

  • Lee, Huido;Kim, Jaehyeon;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.66-78
    • /
    • 2021
  • In this study, the effect of Symmetry Breaking was compared according to the equivalent ratio condition and the number of nozzles where combustion instability occurs in an annular combustor. Generally, due to the relatively short combustor length, a longitudinal instability was less likely to occur in the annular combustor, but the combustion instability sometimes happens when ducts such as transition piece in gas turbine power station are present. In this case, due to the duct, only the longitudinal instability mode is observed. The characteristics of Symmetry Breaking were investigated according to the number of five lean nozzles and the equivalent ratio combination, and as the equivalent ratio decreased, the effect of Symmetry Breaking rapidly occurred, and the instability was dramatically disappeared and the amplitude was greatly reduced. In addition, it was confirmed that as the number of lean nozzles increased, a phenomenon such as a reduction in the equivalent ratio appeared.

An Optimal Design Method of a Linear Generator for Conversion of Wave Energy (파력에너지 변환을 위한 선형발전기의 최적 설계 방법)

  • Kim, Jung-Yoon;Kim, Byung Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1195-1204
    • /
    • 2021
  • In this paper, we present an optimal design method for wave power generators using the response surface analysis. Especially, in our method, we reduce the mechanical loss by selecting the linear generator whose linear movement can be converted to the electrical energy directly with the vertical movement of waves. Therefore, we calculate the exciting force acting on the drive device in a slow-wave condition and determine the winding process with a ratio of the slots and poles for the improvement of energy conversion efficiency. In addition, we employ the regression analysis for deriving the shape factors of the stator and the translator, which have a significant effect on the performance of a generator. We choose the best design variables through the response surface analysis, and then we study the optimization method for designing the efficient experiment using the analysis results. Finally, we show the validity of the proposed method through the simulation results.

Knowledge Representation and Reasoning using Metalogic in a Cooperative Multiagent Environment

  • Kim, Koono
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.35-48
    • /
    • 2022
  • In this study, it propose a proof theory method for expressing and reasoning knowledge in a multiagent environment. Since this method determines logical results in a mechanical way, it has developed as a core field from early AI research. However, since the proposition cannot always be proved in any set of closed sentences, in order for the logical result to be determinable, the range of expression is limited to the sentence in the form of a clause. In addition, the resolution principle, a simple and strong reasoning rule applicable only to clause-type sentences, is applied. Also, since the proof theory can be expressed as a meta predicate, it can be extended to the metalogic of the proof theory. Metalogic can be superior in terms of practicality and efficiency based on improved expressive power over epistemic logic of model theory. To prove this, the semantic method of epistemic logic and the metalogic method of proof theory are applied to the Muddy Children problem, respectively. As a result, it prove that the method of expressing and reasoning knowledge and common knowledge using metalogic in a cooperative multiagent environment is more efficient.

Applying nano-HA in addition to scaling and root planing increases clinical attachment gain

  • Uysal, Ozge;Ustaoglu, Gulbahar;Behcet, Mustafa;Albayrak, Onder;Tunali, Mustafa
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.2
    • /
    • pp.116-126
    • /
    • 2022
  • Purpose: This study evaluated the efficacy of treating periodontitis using subgingival nano-hydroxyapatite powder with an air abrasion device (NHAPA) combined with scaling and root planing (SRP). Methods: A total of 28 patients with stage III periodontitis (grade B) were included in this study, although 1 was lost during follow-up and 3 used antibiotics. The patients were divided into a test group and a control group. All patients first received whole-mouth SRP using hand instruments, and a split-mouth approach was used for the second treatment. In the test group, the teeth were treated with NHAPA for 15 seconds at 70% power per pocket. Subgingival plaque samples were obtained from the 2 deepest pockets at the test and control sites before treatment (baseline) and 3 months after treatment. The full-mouth plaque index (PI), gingival index (GI), papillary bleeding index (PBI), bleeding on probing (BOP), probing depth (PD) and clinical attachment level (CAL) were recorded at baseline and at 1- and 3-month post-treatment. Real-time polymerase chain reaction was used to determine the colonisation of Treponema denticola (Td), Porphyromonas gingivalis (Pg), and Aggregatibacter actinomycetemcomitans in the subgingival plaque. Results: From baseline to the first month, the test group showed significantly larger changes in BOP and CAL (43.705%±27.495% and 1.160±0.747 mm, respectively) than the control group (36.311%±27.599% and 0.947±0.635 mm, respectively). Periodontal parameters had improved in both groups at 3 months. The reductions of PI, GI, BOP, PD, and CAL in the test group at 3 months were greater and statistically significant. The total bacterial count and Td and Pg species had decreased significantly by the third month in both groups (P<0.05). Conclusions: Applying NHAPA in addition to SRP improves clinical periodontal parameters more than SRP alone. Subgingival NHAPA may encourage clot adhesion to tooth surfaces by increasing surface wettability.

Design of a Height Adjustable Bunker Bed Using a Gas Spring (가스 스프링을 이용한 높이조절 벙커침대 설계)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • A bunker bed is a type of furniture that efficiently utilizes a narrow indoor space by having a high bed and using the empty space below as a living and storage space. The demand for multi-purpose furniture is increasing due to the recent increase in single-person households and wide-spread shared accommodation. According to the consumer research, one of the major drawbacks of a bunker bed was to get on and off the bed through a ladder or stairs. In order to overcome these problems, it was confirmed that the height adjustment function that can easily adjust the minimum and maximum heights of the bed was necessary. In this study, a height adjustable bunker bed was designed by using a gas spring that generates a repulsive force by the compressed gas inside. The design process consisted of the following three steps: Firstly, the hysteresis characteristics due to a friction and spring constant of a commercial gas spring were confirmed by measuring the repulsive force vs. compressed displacement. Secondly, requirements of the vertical lifting force exerted on the bed against gravity force were derived. Finally, the height-adjustable bed using the four-bar link mechanism was designed with 4 parameters so that the bed weight of 60-70 kgf could be adjusted to 800 mm in height by an affordable initial operation force. The performance was verified through prototype production and the results of vertical displacement and force to move were nearly the same as designed. In addition, an electrically operated height-adjustable bed was also designed with linear actuators and the performance was proved with the prototype.

Improved Hot data verification considering the continuity and frequency of data update requests (데이터 갱신요청의 연속성과 빈도를 고려한 개선된 핫 데이터 검증기법)

  • Lee, Seungwoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.33-39
    • /
    • 2022
  • A storage device used in the mobile computing field should have low power, light weight, durability, etc., and should be able to effectively store and manage large-capacity data generated by users. NAND flash memory is mainly used as a storage device in the field of mobile computing. Due to the structural characteristics of NAND flash memory, it is impossible to overwrite in place when a data update request is made, so it can be solved by accurately separating requests that frequently request data update and requests that do not, and storing and managing them in each block. The classification method for such a data update request is called a hot data identification method, and various studies have been conducted at present. This paper continuously records the occurrence of data update requests using a counting filter for more accurate hot data validation, and also verifies hot data by considering how often the requested update requests occur during a specific time.

A Fourier sine series solution of static and dynamic response of nano/micro-scaled FG rod under torsional effect

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.467-482
    • /
    • 2022
  • In the current work, static and free torsional vibration of functionally graded (FG) nanorods are investigated using Fourier sine series. The boundary conditions are described by the two elastic torsional springs at the ends. The distribution of functionally graded material is considered using a power-law rule. The systems of equations of the mechanical response of nanorods subjected to deformable boundary conditions are achieved by using the modified couple stress theory (MCST) and taking the effects of torsional springs into account. The idea of the study is to construct an eigen value problem involving the torsional spring parameters with small scale parameter and functionally graded index. This article investigates the size dependent free torsional vibration based on the MCST of functionally graded nano/micro rods with deformable boundary conditions using a Fourier sine series solution for the first time. The eigen value problem is constructed using the Stokes' transform to deformable boundary conditions and also the convergence and accuracy of the present methodology are discussed in various numerical examples. The small size coefficient influence on the free torsional vibration characteristics is studied from the point of different parameters for both deformable and rigid boundary conditions. It shows that the torsional vibrational response of functionally graded nanorods are effected by geometry, small size effects, boundary conditions and material composition. Furthermore, for all deformable boundary conditions in the event of nano-sized FG nanorods, the incrementing of the small size parameters leads to increas the torsional frequencies.