• Title/Summary/Keyword: mechanical loads

Search Result 1,779, Processing Time 0.035 seconds

Mismatch Limit Load Analyses for V-groove Welded Pipe with Through-wall Circumferential Defect in Centre of Weld (원주방향 관통균열이 용접부 중앙에 존재하는 V-그루브 맞대기 용접배관의 한계하중 해석)

  • Kim, Sang-Hyun;Han, Jae-Jun;Chung, Jin-Taek;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1379-1386
    • /
    • 2013
  • The present work reports the mismatch limit loads for a V-groove welded pipe for a circumferential crack using finite element (FE) analyses. To integrate the effect of groove angles on mismatch limit loads, one geometry-related slenderness parameter was modified by relevant geometric parameters including the groove angle, crack depth, and root opening based on plastic deformation patterns in the theory of plasticity. Circumferential through-wall cracks are located at the centre of the weldments with two different groove angles ($45^{\circ}$, $90^{\circ}$). With regard to the loading conditions, axial (longitudinal) tension and bending are applied for all cases. For the parent and weld metal, elastic-perfectly plastic materials are considered to simulate and analyze under- and over-matching conditions in plasticity. The overall results from the proposed solutions are found to be similar to the FE results.

An analysis of the deformation of PV module under different mechanical loads (기계 하중에 따른 PV모듈 변형 분석)

  • Choi, Ju-Ho;Jung, Tea-Hee;Song, Hee-Eun;Kim, Il-Soo;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.58-66
    • /
    • 2013
  • Recently, PV module that the most important part of the photovoltaic system is more widened to lower manufacturing costs for module. However, the broad PV module results to the serious mechanical damage corning from installation circumstances such as snow, wind etc of snow and finally lead to the dramatic degradation of the electrical behavior of PV module. In this paper, 3 kinds of PV modules that consist of the different thickness and area of front glass and the diverse cross sectional structures of the frame are prepared for this experiment. The drooped length and electrical outputs of the PV modules are measured by means of applying 600Pa mechanical load to the PV modules from 1200Pa to 5400Pa base on the mechanical load test procedure of K SC IEG 61215 standard. The simulation data are obtained by the simulation tool as ANSYS and those are validate by comparing with the those experimental results figure out relations between the deformation and the constituent part of PV module.

Analysis of energy and daylight performance of adjustable shading devices in region with hot summer and cold winter

  • Freewan, Ahmed A.;Shqra, Lina W.
    • Advances in Energy Research
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2017
  • Large glazed surfaces and windows become common features in modern buildings. The spread of these features was influenced by the dependence of designers on mechanical and artificial systems to provide occupants with thermal and visual comfort. Countries with hot summer and cold winter conditions, like Jordan, require maximum shading from solar radiation in summer, and maximum exposure in winter to reduce cooling and heating loads respectively. The current research aims at designing optimized double-positioned external shading device systems that help to reduce energy consumption in buildings and provide thermal and visual comfort during both hot and cold seasons. Using energy plus, a whole building energy simulation program, and radiance, Lighting Simulation Tool, with DesignBuilder interface, a series of computer simulations for energy consumption and daylighting performance were conducted for offices with south, east, or west windows. The research was based on comparison to determine the best fit characteristics for two positions of adjustable horizontal louvers on south facade or vertical fins on east and west facades for summer and winter conditions. The adjustable shading systems can be applied for new or retrofitted office or housing buildings. The optimized shading devices for summer and winter positions helped to reduce the net annual energy consumption compared to a base case space with no shading device or with curtains and compared to fix shading devices.

Nonlinear Response Structural Optimization of a Nuclear Fuel Rod Spacer Grid Spring Using the Equivalent Load (등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계)

  • Kim, Do-Won;Lee, Hyun-Ah;Song, Ki-Nam;Kim, Yong-Il;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.694-699
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring,nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are teansformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response no EL. The objective function is defined by minimizing the maximum stress in the spring while is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

  • PDF

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue life

  • Kong, C.D.;Bang, J.H.;Jeong, J.C.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.88-89
    • /
    • 2002
  • The aims of this study is to realize the structural design for development of a medium scale E-glass/epoxy composite wind turbine blade for a 750KW class horizontal axis wind turbine system. In this study, the various load cases specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads such as aerodynamic and centrifugal loads, loads due to accumulation of ice, hygro-thermal and mechanical loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade were peformed using tile finite element method(FEM). In the structural design, the acceptable blade structural configuration was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable in any various load cases Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design fond and the fatigue.

  • PDF

Feasibility of using biogas in a micro turbine for supplying heating, cooling and electricity for a small rural building

  • Rajaei, Gh.;Atabi, F.;Ehyaei, M.A.
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.129-145
    • /
    • 2017
  • In this study, the use of a micro gas turbine system using biogas to supply heating, cooling and electricity loads of a rural building located in rural area around Tehran has been studied. Initially, the amount of energy needed by the farmhouse was calculated and then the number of needed microturbines was determined. Accordingly, the amount of substances entering biogas digester as well as tank volume were determined. The results of this study showed that village house loads including electrical, heating and cooling and hot water loads can be supplied by using a microturbine with a nominal power of 30 kW and $33.5m^3/day$ of biogas. Digester tank and reservoir tank volumes are $67m^3$ and $31.2m^3$, respectively. The cost of electricity produced by this system is 0.446 US$/kWh. For rural area in Iran, this system is not compatible with micro gas turbine and IC engine system use urban natural gas due to low price of natural gas in Iran, but it can be compatible by wind turbine, photovoltaic and hybrid system (wind turbine& photovoltaic) systems.

Power Flow Control at the Subnetwork-Level in Microgrids

  • Liu, Kun;Khan, Muhammad Mansoor;Rana, Ahmad;Fei, Dong
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.588-603
    • /
    • 2018
  • This paper presents the idea of a smart load that can adjust the input power flow based on the intermittent power available from RESs (Renewable Energy Resources) to regulate the line voltage, and draw a constant power from the grid. To this effect, an innovative power flow controller is presented based on a Resistive ES (Electric Spring) in combination with a PEAT (Power Electronics based Adjustable Transformer), which can effectively shape the load power flow at the subnetwork level. With a PEAT incorporated in the step down transformer at the grid side, the proposed controller can supply non-critical loads through local RESs, and the critical loads can draw a relatively constant power from the grid. If there is an abundance of power produced by the RESs, the controller can supply both non-critical loads and critical loads through the RES, which significantly reduces the power demand from the grid. The principle, practicality, stability analysis, and controller design are presented. In addition, simulation results show that the power flow controller performs well in shaping the load power flow at the subnetwork level, which decreases the power demand on the grid. Experimental results are also provided to show that the controller can be realized.

Computational Study on Unsteady Aerodynamic Loads on Crossing Train (교행하는 고속전철의 비정상 공기력에 대한 수치적 연구)

  • Hwang, Jae-Ho;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.599-604
    • /
    • 2000
  • In order to study unsteady aerodynamic loads on high speed trains passing by each other at the speed of 350km/h, three-dimensional flow fields around trains during the crossing event are numerically simulated using the three-dimensional Euler equations. The Roe's FDS with MUSCL interpolation is employed to simulate wave phenomena properly. An efficient moving grid system based on domain decomposition techniques is developed to analyze the unsteady flow field induced by the restricted motion of a train on a rail. The numerical simulations of the trains passing by on the double-track are carried out to study the effect of the train nose-shape, the train length and the existence of tunnel when the crossing event occur. Unsteady aerodynamic loads side force and drag force-acting on the train during the crossing are numerically predicted and anlayzed. It is found that the strength of the side force mainly depends on the nose-shape, and that of drag force on tunnel existence. And it is observed that the push-pull like impulsive force successively acts on each car and acts in different directions between the neighborhood cars. The maximum change of the impulsive force reaches about 3 tons. These aerodynamic force data are absolutely necessary for the evaluation of the stability of the high speed multi-car train. The results also indicate the effectiveness of the present numerical method for the simulation of unsteady flow field induced by the bodies in the relative motion.

  • PDF

Design of launch pad for mitigating acoustic loads on launch vehicle at liftoff (우주발사체 발사 시 음향하중 저감을 위한 발사대 설계)

  • Tsutsumi, Seiji
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.331-341
    • /
    • 2020
  • At liftoff, launch vehicles are subject to harmful acoustic loads due to the intense acoustic waves generated by propulsion systems. Because these waves can cause electronic and mechanical components of launch vehicles and payloads to fail, predicting and mitigating acoustic loads is an important design issue. This article presents the latest information about the generation of acoustic waves and the acoustic design methods applicable to the launch pad. The development of the Japanese Epsilon solid launcher is given as an example of the new methodology for launch pad design. Computational fluid dynamics together with 1/42 scale model testing were performed for this development. Effectiveness of the launch pad design to reduce acoustic loads was confirmed by the post-flight analysis.

Buckling and stability analysis of sandwich beams subjected to varying axial loads

  • Eltaher, Mohamed A.;Mohamed, Salwa A
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.241-260
    • /
    • 2020
  • This article presented a comprehensive model to study static buckling stability and associated mode-shapes of higher shear deformation theories of sandwich laminated composite beam under the compression of varying axial load function. Four higher order shear deformation beam theories are considered in formulation and analysis. So, the model can consider the influence of both thick and thin beams without needing to shear correction factor. The compression force can be described through axial direction by uniform constant, linear and parabolic distribution functions. The Hamilton's principle is exploited to derive equilibrium governing equations of unified sandwich laminated beams. The governing equilibrium differential equations are transformed to algebraic system of equations by using numerical differential quadrature method (DQM). The system of equations is solved as an eigenvalue problem to get critical buckling loads and their corresponding mode-shapes. The stability of DQM in determining of buckling loads of sandwich structure is performed. The validation studies are achieved and the obtained results are matched with those. Parametric studies are presented to figure out effects of in-plane load type, sandwich thickness, fiber orientation and boundary conditions on buckling loads and mode-shapes. The present model is important in designing process of aircraft, naval structural components, and naval structural when non-uniform in-plane compressive loading is dominated.