• Title/Summary/Keyword: mechanical loads

Search Result 1,792, Processing Time 0.028 seconds

Energy and Exergy Analysis of Kalina Based Power and Cooling Combined Cycle (칼리나 사이클을 기반으로 하는 동력 및 냉동 복합 사이클의 에너지 및 엑서지 성능 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;KO, HYUNG JONG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.2
    • /
    • pp.242-249
    • /
    • 2020
  • The Kalina cycle (KC) is considered as one of the most efficient systems for recovery of low grade heat. Recently, Kalina based power and cooling cogeneration cycles (KPCCCs) have been suggested and attracted much attention. This paper presents an energy and exergy analysis of a recently suggested KPCCC with flexible loads. The cycle consists of a KC (KCS-11) and an aqua-ammonia absorption refrigeration cycle. By adjusting the splitting ratios, the cycle can be operated with four modes of pure Kalina cycle, pure absorption cooling cycle, Kalina-cooling parallel cycle, and Kalina-cooling series cycle. The effects of system variables and the operating modes on the energetic and exergetic performances of the system are parametrically investigated. Results show that the system has great potential for efficient utilization of low-grade heat source by adjusting loads of power and cooling.

METHOD OF FATIGUE LIFE PREDICTION FOR SPOT WELDED STRUCTURE

  • Okabe, A.;Kaneko, T.;Tomioka, N.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.353-360
    • /
    • 2006
  • The nominal structural stress calculation method proposed by Radaj has included some problems as follows: (a) How the value of the diameter D is decided in the method; (b) It is not possible to estimate nominal structural stress of the spot welded joints with the balanced sheet in-plane load that no general loads are obtained by FE shell analysis. In this paper, the new method for calculating nominal structural stress was proposed to solve above-mentioned problems. The proposed method calculates the nominal structural stress through the circular plate theory in theory of elasticity. This theoretical analysis uses not only general loads but also nodal displacements around spot welding provided by FE shell analysis as boundary condition. Fatigue test data of various spot-welded joints could be arranged in a narrow bandwidth on S-N chart using the nominal structural stresses calculated by proposed method. The fatigue life prediction method using the proposed method for calculating nominal structural stress is useful for the prior evaluation technique that can predict the fatigue life of spot welding by CAE.

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

A Study on the Estimation of Temperature, Humidity and Cooling Load (온도, 습도 및 냉방부하 예측에 관한 연구)

  • Yoo, Seong-Yeon;Han, Seung-Ho;Lee, Je-Myo;Han, Kyou-Hyun;Noh, Kwan-Jong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.80-85
    • /
    • 2006
  • The peak demand of electricity in summer season mainly comes from the day time cooling loads. Ice thermal Storage System (ITSS) uses off-peak electricity at night time to make ice for the day time cooling. In order to maximize the use of cold storage in ITSS, the estimation of day time cooling load for the building is necessary. In this study, we present a method of cooling load estimation using 5 years of normalized outdoor temperature, relative humidity, and the building construction data. We applied the hourly-based estimation to a general hospital building with relatively less sudden heat exchange and the results are compared with the measured cooling load of the building. The results show that the cooling loads estimation depends on the indoor cooling design temperature of the building.

  • PDF

Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads

  • Cai, Jinhu;Yang, Zhijie;Wang, Chunjie;Ding, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.267-280
    • /
    • 2022
  • Multiscale structure has attracted significant interest due to its high stiffness/strength to weight ratios and multifunctional performance. However, most of the existing concurrent topology optimization works are carried out under deterministic load conditions. Hence, this paper proposes a robust concurrent topology optimization method based on the bidirectional evolutionary structural optimization (BESO) method for the design of structures composed of periodic microstructures subjected to uncertain dynamic loads. The robust objective function is defined as the weighted sum of the mean and standard deviation of the module of dynamic structural compliance with constraints are imposed to both macro- and microscale structure volume fractions. The polynomial chaos expansion (PCE) method is used to quantify and propagate load uncertainty to evaluate the objective function. The effective properties of microstructure is evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The proposed method is a non-intrusive method, and it can be conveniently extended to many topology optimization problems with other distributions. Several numerical examples are used to validate the effectiveness of the proposed robust concurrent topology optimization method.

Effect of moving load on dynamics of nanoscale Timoshenko CNTs embedded in elastic media based on doublet mechanics theory

  • Abdelrahman, Alaa A.;Shanab, Rabab A.;Esen, Ismail;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.255-270
    • /
    • 2022
  • This manuscript illustrates the dynamic response of nanoscale carbon nanotubes (CNTs) embedded in an elastic media under moving load using doublet mechanics theory, which not considered before. CNTs are modelled by Timoshenko beam theory (TBT) and a bottom to up modelling nano-mechanics is simulated by doublet mechanics theory to capture the size effect of CNTs. To explore the influence of the CNTs configurations on the dynamic behaviour, both armchair and zigzag configurations are considered. The governing equations of motion and the associated boundary conditions are obtained using the Hamiltonian principle. The Navier solution methodology is applied to obtain the solutions for both orientations. Free vibration and forced response under moving loads are considered. The accuracy of the developed procedure is verified by comparing the obtained results with available previous algorithms and good agreement is observed. Parametric studies are conducted to demonstrate effects of doublet length scale, CNTs configurations, moving load velocities as well as the elastic media parameters on the dynamic behaviours of CNTs. The developed procedure is supportive in the design and manufacturing of MEMS/NEMS made from CNTs.

Multiple unequal cracks between an FGM orthotropic layer and an orthotropic substrate under mixed mode concentrated loads

  • M. Hassani;M.M. Monfared;A. Salarvand
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.535-546
    • /
    • 2023
  • In the present paper, multiple interface cracks between a functionally graded orthotropic coating and an orthotropic half-plane substrate under concentrated loading are considered by means of the distribution dislocation technique (DDT). With the use of integration of Fourier transform the problem is reduced to a system of Cauchy-type singular integral equations which are solved numerically to compute the dislocation density on the surfaces of the cracks. The distribution dislocation is a powerful method to calculate accurate solutions to plane crack problems, especially this method is very good to find SIFs for multiple unequal cracks located at the interface. Hence this technique allows considering any number of interface cracks. The primary objective of this paper is to investigate the effects of the interaction of multiple interface cracks, load location, material orthotropy, nonhomogeneity parameters and geometry parameters on the modes I and II SIFs. Numerical results show that modes I/II SIFs decrease with increasing the nonhomogeneity parameter and the highest magnitude of SIF occurs where distances between the load location and crack tips are minimal.

Assessment of non-polynomial shear deformation theories for thermo-mechanical analysis of laminated composite plates

  • Joshan, Yadwinder S.;Grover, Neeraj;Singh, B.N.
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.761-775
    • /
    • 2018
  • In the present work, the recently developed non-polynomial shear deformation theories are assessed for thermo-mechanical response characteristics of laminated composite plates. The applicability and accuracy of these theories for static, buckling and free vibration responses were ascertained in the recent past by several authors. However, the assessment of these theories for thermo-mechanical analysis of the laminated composite structures is still to be ascertained. The response characteristics are investigated in linear and non-linear thermal gradient and also in the presence and absence of mechanical transverse loads. The laminated composite plates are modelled using recently developed six shear deformation theories involving different shear strain functions. The principle of virtual work is used to develop the governing system of equations. The Navier type closed form solution is adopted to yield the exact solution of the developed equation for simply supported cross ply laminated plates. The thermo-mechanical response characteristics due to these six different theories are obtained and compared with the existing results.

Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings

  • Isavand, S.;Bodaghi, M.;Shakeri, M.;Mohandesi, J. Aghazadeh
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.1-28
    • /
    • 2015
  • In this paper, the dynamic response of functionally gradient steel (FGS) composite cylindrical panels in steady-state thermal environments subjected to impulsive loads is investigated for the first time. FGSs composed of graded ferritic and austenitic regions together with bainite and martensite intermediate layers are analyzed. Thermo-mechanical material properties of FGS composites are predicted according to the microhardness profile of FGS composites and approximated with appropriate functions. Based on the three-dimensional theory of thermo-elasticity, the governing equations of motionare derived in spatial and time domains. These equations are solved using the hybrid Fourier series expansion-Galerkin finite element method-Newmark approach for simply supported boundary conditions. The present solution is then applied to the thermo-elastic dynamic analysis of cylindrical panels with three different arrangements of material compositions of FGSs including ${\alpha}{\beta}{\gamma}M{\gamma}$, ${\alpha}{\beta}{\gamma}{\beta}{\alpha}$ and ${\gamma}{\beta}{\alpha}{\beta}{\gamma}$ composites. Benchmark results on the displacement and stress time-histories of FGS cylindrical panels in thermal environments under various pulse loads are presented and discussed in detail. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state of the art of this problem, and provide pertinent results that are instrumental in the design of FGS structures under time-dependent mechanical loadings.

Wear Characteristics of Carburized SCM415 Steel for Control Valve (컨트롤 밸브용 침탄 SCM415강의 마멸 특성)

  • Lee, Jeong Won;Na, Seong Hyeon;Yoon, Dong Hyun;Han, Sun Hyoung;Kim, Hyung Gong;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.873-878
    • /
    • 2016
  • SCM415 steel for the control valve undergoes wear because of continuous movement between the valve and valve case. The wear of the valve interrupts the performance of the valve, and decreases the service life. In this study, wear characteristics of the as-received and carburized SCM415 steels are evaluated. The wear tests are conducted for various temperatures and loads using a reciprocating wear tester. From these results, wear loss, specific wear rate, and coefficient of friction are analyzed. The wear mechanism was analyzed by SEM. The interaction effects between loads and temperatures on wear loss are determined for analysis of variance using MINITAB.