• Title/Summary/Keyword: mechanical loads

Search Result 1,774, Processing Time 0.031 seconds

Quasi-Static Structural Optimization Technique Using Equivalent Static Loads Calculated at Every Time Step as a Multiple Loading Condition (매 시간단계의 등가정하중을 다중하중조건으로 이용한 준정적 구조최적화 방법)

  • Choe, U-Seok;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2568-2580
    • /
    • 2000
  • This paper presents a quasi-static optimization technique for elastic structures under dynamic loads. An equivalent static load (ESL) set is defined as a static load set which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at every time step are employed to represent the various states of the structure under the dynamic load. They can cover every critical state that might happen at an arbitrary time. Continuous characteristics of dynamic load are simulated by multiple discontinuous ones of static loads. The calculated sets of ESLs are applied as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. Design cycles are repeated until a design converges. The analysis domain gives a loading condition necessary for the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. This iterative process is quite similar to that of the multidisciplinary optimization technique. Even though the global convergence cannot be guaranteed, the proposed technique makes it possible to optimize the structures under dynamic loads. It has also applicability, flexibility, and reliability.

Effect of Horizontal Load on the Performance of Track Roller (수평방향 하중이 트랙롤러의 특성에 미치는 영향)

  • Kang, Bo-Sik;Lee, Choong-Sung;Kim, Yong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.743-750
    • /
    • 2016
  • Track rollers are the key parts that support the weight applied to the caterpillar track of construction machinery. The operating conditions of construction machinery are harsh; hence, the track rollers exposed to these conditions can experience failures such as oil leakage and breakdown of the machine, because of impacts during driving. The failure of track-rollers has a major effect on the operation of the construction machinery. Therefore, each manufacturer tries to evaluate the performance of their products by conducting a self-test. However, only the vertical loads applied to the track rollers are considered in most of the self-tests. This method has the problem of ignoring the horizontal loads that are applied to the track rollers while rotary driving, and hence it does not create the practical operating condition of the construction machinery. In this study, we have determined the experimental conditions that effectively consider the magnitudes of the vertical and horizontal loads. The results of simulations and experiments conducted to assess the influence of horizontal loads on the failure of track rollers are presented in this paper.

Buckling of axially compressed composite cylinders with geometric imperfections

  • Taheri-Behrooz, Fathollah;Omidi, Milad
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.557-567
    • /
    • 2018
  • Cylindrical shell structures buckle at service loads which are much lower than their associated theoretical buckling loads. The main source of this discrepancy is the presence of various imperfections which are created on the cylinder body during different processes as manufacturing, handling, assembling and machining. Many cylindrical shell structures are still designed against buckling based on the experimental data introduced by NASA SP-8007 as conservative lower bound curves. This study employed the numerical based Linear Buckling mode shape Imperfection (LBMI) method and modified it using a stochastic method to assess the effect of geometrical imperfections in more details on the buckling of cylindrical shells with and without the cutout. The comparison of results with those obtained from the numerical Simcple Perturbation Load Imperfection (SPLI) method for cylinders with and without cutout revealed a good correlation. The effect of two parameters of size and number of cutouts on the buckling load was investigated using the linear buckling and Modified LBMI methods. Results confirmed that in cylinders with a small cutout inserting geometrical imperfection using either SPLI or modified LBMI methods significantly reduced the value of the predicted buckling load. However, in cylinders with larger cutouts, the effect of the cutout is dominant, thus considering geometrical imperfection had a minor effect on the buckling loads predicted by both SPLI and modified LBMI methods. Furthermore, the modified LBMI method was employed to evaluate the combination effect of cutout numbers and size on the buckling load. It is shown that in small cutouts, an increasing in the cutout size up to a certain value resulted in a remarkable reduction of the buckling load, and beyond that limit, the buckling loads were constant against D/R ratios. In addition, the cutout number shows a more significant effect on decreasing the buckling load at small D/R ratios than large D/R ratios.

Stress analysis of the KSTAR vacuum vessel under thermal and electromagnetic loads (KSTAR 진공용기 열 및 전자기력 하중에 의한 응력해석)

  • Cho, S.;Kim, J.B.;Her, N.I.;Im, K.H.;Sa, J.W.;Yu, I.K.;Kim, Y.C.;Do, C.J.;Kwon, M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.325-330
    • /
    • 2001
  • One of the principal components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak structure is the vacuum vessel, which acts as the high vacuum boundary for the plasma and also provides the structural support for internal components. Hyundai Heavy Industries Inc. has performed the engineering design of the vacuum vessel. Here the overall configuration of the KSTAR vacuum vessel was briefly described and then the design methodology and the analysis results were presented. The vacuum vessel consists of double walls, several ports, leaf spring style supports. Double walls are separated by reinforcing ribs and filled with baking/shielding water. The overall external dimensions of the main body are 3.39 m high, 1.11 m inner radius, 2.99 m outer radius, and made of SA240-316LN. The vacuum vessel was designed to be capable of achieving the base pressure of $1\times10^{-8}$ Torr, and also to be structurally capable of sustaining the vacuum pressure, the electromagnetic and thermal loads during plasma disruption and bakeout, respectively. The vacuum vessel will be baked out maximum $150^{\circ}C$ by hot pressurized water through the channels formed between double walls and the reinforcing ribs. A 3-D temperature distribution and the resulting thermal loads in the vessel were calculated during bakeout. It was found that the vacuum vessel and its supports were structurally rigid based on the thermal stress analysis. The maximum electromagnetic loads on the vacuum vessel induced by eddy and halo currents resulting from the engineering plasma radial and vertical disruption scenarios have been estimated. The stress analyses have been performed based on these electromagnetic loads and the resulting stresses at he critical locations of the vacuum vessel were within the allowable stresses.

  • PDF

Static stability and of symmetric and sigmoid functionally graded beam under variable axial load

  • Melaibari, Ammar;Khoshaim, Ahmed B.;Mohamed, Salwa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.671-685
    • /
    • 2020
  • This manuscript presents impacts of gradation of material functions and axial load functions on critical buckling loads and mode shapes of functionally graded (FG) thin and thick beams by using higher order shear deformation theory, for the first time. Volume fractions of metal and ceramic materials are assumed to be distributed through a beam thickness by both sigmoid law and symmetric power functions. Ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM) symmetric distributions are proposed relative to mid-plane of the beam structure. The axial compressive load is depicted by constant, linear, and parabolic continuous functions through the axial direction. The equilibrium governing equations are derived by using Hamilton's principles. Numerical differential quadrature method (DQM) is developed to discretize the spatial domain and covert the governing variable coefficients differential equations and boundary conditions to system of algebraic equations. Algebraic equations are formed as a generalized matrix eigenvalue problem, that will be solved to get eigenvalues (buckling loads) and eigenvectors (mode shapes). The proposed model is verified with respectable published work. Numerical results depict influences of gradation function, gradation parameter, axial load function, slenderness ratio and boundary conditions on critical buckling loads and mode-shapes of FG beam structure. It is found that gradation types have different effects on the critical buckling. The proposed model can be effective in analysis and design of structure beam element subject to distributed axial compressive load, such as, spacecraft, nuclear structure, and naval structure.

The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • v.4 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • Background: To determine the influence of lifting speed and type on peak and cumulative back compressive force (BCF) and shoulder moment (SM) loads during symmetric lifting. Another aim of the study was to compare static and dynamic lifting models. Methods: Ten male participants performed a floor-to-shoulder, floor-to-waist, and waist-to-shoulder lift at three different speeds [slow (0.34 m/s), medium (0.44 m/s), and fast (0.64 m/s)], and with two different loads [light (2.25 kg) and heavy (9 kg)]. Two-dimensional kinematics and kinetics were determined. A three-way repeated measures analysis of variance was used to calculate peak and cumulative loading of BCF and SM for light and heavy loads. Results: Peak BCF was significantly different between slow and fast lifting speeds (p < 0.001), with a mean difference of 20% between fast and slow lifts. The cumulative loading of BCF and SM was significantly different between fast and slow lifting speeds (p < 0.001), with mean differences ${\geq}80%$. Conclusion: Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient.

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.

Effect of Micro-bolt Reinforcement for Composite Scarf Joint (복합재 스카프 조인트에서의 마이크로 볼트 보강에 대한 타당성 연구)

  • Lee, Gwang-Eun;Sung, Jung-Won;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • The reinforcement effect of micro-bolt for a bonded scarf joint was investigated. Three scarf ratios of 1/10, 1/20, and 1/30 were considered to examine the effect of scarf patch configuration on joint strength. To maintain the same density of micro-bolt, 16, 32, and 48 bolts were installed in the scarf joint specimens with scarf ratios of 1/10, 1/20, and 1/30, respectively. Tests were also carried out on the joints that are bonded with only adhesive and that are fastened with only micro-bolts to obtain reference values. The average failure loads of the adhesive joints with scarf ratios of 1/10, 1/20, and 1/30 were 29.7, 39.6, and 44.8 kN, respectively. In case of micro-bolt reinforcement, the failure loads at the same scarf ratios were 28.4, 37.2, and 40.1 kN, respectively, which corresponds to 96, 94, and 90% of the pure adhesive joint failure loads. In the case of using only micro-bolts, the failure loads were only 13-25% of the average failure loads of pure adhesive joints. Fatigue test was also conducted for the joints with scarf ratio of 1/10. The results show that the fatigue strength of hybrid joints using both adhesive and microbolts together slightly increased compared to the fatigue strength of adhesive joint, but the rate of increase was small to 2-3%. Through this study, it was confirmed that the reinforcement effect of micro-bolt is negligible in the scarf joints where shear stress is dominating the failure, unlike in the structure where peel stress is dominant.

A Stress Analysis of the Cast Iron Insert of Spent Nuclear Fuel Disposal Canister with the Underground Water Pressure Variation in a Deep Repository (지하수압 변화에 따른 심지층 핵폐기물 처분용기 내부 주철 구조물의 응력해석)

  • 강신욱;권영주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.77-84
    • /
    • 2000
  • In this paper, the stress analysis of the cast iron insert of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressue of underground water, swelling pressure of bentonite, sudden rock movement etc.. Hence, the canister should be designed to withstand these loads. The cast iron insert of the canister mainly supports these loads. Therefore, the stress analysis of the cast iron insert is done to determine the design variables such as the diameter versus length of canister and the number and array type of inner baskets in this paper, The linear static structural analysis is done using the finite element analysis method. And the finite element analysis code, NISA, is used for the computation.

  • PDF