• 제목/요약/키워드: mechanical loading

검색결과 2,766건 처리시간 0.032초

Mechanical Properties of Corn Husk Flour/PP Bio-composites

  • Jagadeesh, Dani.;Sudhakara, P.;Lee, D.W.;Kim, H.S.;Kim, B.S.;Song, J.I.
    • Composites Research
    • /
    • 제26권4호
    • /
    • pp.213-217
    • /
    • 2013
  • The focus in the present work is to study the agro-waste corn husk bio-filler as reinforcement for polypropylene. These materials have been created by extrusion and injection molding. The effect of filler content by 10, 20, 30 and 40 wt. % and mesh sizes of 50~100, 100 and 300 on the mechanical properties was studied. For the un-notched specimens, the results of flexural strength showed a declining trend with increase the filler loading and the results of impact strength showed an increasing trend with increase the mesh size. In contrast, enhanced flexural modulus was observed with increasing filler loading and size.

짧은 피로균열의 랜덤하중하의 균열닫힘 및 진전거동 (Part I: 균열닫힘 거동 상세) (Crack Closure and Growth Behavior of Short Fatigue Cracks under Random Loading (Part I : Details of crack Closure Behavior))

  • 이신영;송지호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.79-84
    • /
    • 2000
  • Crack closure and growth behavior of physically short fatigue cracks under random loading are Investigated by performing narrow- and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks.

  • PDF

반복하중을 받는 Dobby Hook의 설계에 관한 실험적 연구 (An Experimental Study on the Design of Dobby Hook for Repeated Loading Force)

  • 김종수;이규정;이태세
    • 한국기계연구소 소보
    • /
    • 통권20호
    • /
    • pp.115-118
    • /
    • 1990
  • Hook of Dobby is a important part of shedding device, which must be endured the repeated loading force. In this paper, experiment on various mechanical characteristics; measurement of loading force were carried out, and compared the experimental values with results of Finite Element Method.

  • PDF

Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Selvamani, Rajendran
    • Advances in nano research
    • /
    • 제8권3호
    • /
    • pp.203-214
    • /
    • 2020
  • This paper investigated bending of magneto-electro-elastic (MEE) nanobeams under hygro-thermal loading embedded in Winkler-Pasternak foundation based on nonlocal elasticity theory. The governing equations of nonlocal nanobeams in the framework parabolic third order beam theory are obtained using Hamilton's principle and solved implementing an analytical solution. A parametric study is presented to examine the effect of the nonlocal parameter, hygro-thermal-loadings, magneto-electro-mechanical loadings and aspect ratio on the deflection characteristics of nanobeams. It is found that boundary conditions, nonlocal parameter and beam geometrical parameters have significant effects on dimensionless deflection of nanoscale beams.

변동하중을 받는 Lower Control Arm의 잔류응력 변화 (Residual Stress of the Lower Control Arm Subjected to Cyclic Loading)

  • 김기훈;강우종
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.602-608
    • /
    • 2006
  • Vehicle components such as lower control arm are usually affected by heat during the welding process. As a result, residual stress is generated, which has much effect on mechanical performances such as crashworthiness and durability. In this study, the residual stress in lower control arm has been measured by the x-ray diffraction method and been analyzed by finite element methods. Heat transfer during seam weld process has been calculated and used in calculating thermal deformation with temperature dependent material properties. High residual stress has been found at vertical wall both by measurement and simulation. The simulation also showed the residual stress re-distribution when the component is subjected to cyclic loading condition.

Analysis of a Composite Double Cantilever Beam with Stitched Reinforcements Under Mixed Mode Loading : Formulation (I)

  • Jang Insik;Sankar Bhavani V.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.567-577
    • /
    • 2005
  • Several methods for improving the interlaminar strength and fracture toughness of composite materials are developed. Through-the-thickness stitching is considered one of the most common ways to prevent delamination. Stitching significantly increases the Mode I fracture toughness and moderately improves the Mode II fracture toughness. An analytical model has been developed for simulating the behavior of stitched double cantilever beam specimen under various loading conditions. For z-directional load and moment about the y-axis the numerical solutions are compared with the exact solutions. The derived formulation shows good accuracy when the relative error of displacement and rotation between numerical and exact solution were calculated. Thus we can use the present model with confidence in analyzing other problems involving stitched beams.

Ramp Loading 피코 슬라이더의 거동 해석 (An Analysis for the Dynamics of a Pico Slider during the Ramp Loading Process)

  • 김범준;조광표;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.291-298
    • /
    • 2003
  • Recently, load/unload(L/UL) process is applied to a computer information storage device due to its advantages such as lower power consumption, larger data zone, simpler fabrication of disk for no bumped parking zone, and rarer contact between the slider and media. An analysis of the transient motion for the slider is very important to design an air bearing surface (ABS) of the slider to secure the stable performance of the system. During the L/UL process, however, there are several issues occurred such as contact or collision between slider and media. Sometimes this will cause the system failure. In this study, the dynamics of the slider during the loading process are investigated through a numerical simulation using FEM analysis and experiment.

  • PDF

Evaluation of the delamination strengths in differently processed practical Ag-stabilized REBCO CC tapes under transverse loading

  • Diaz, Mark A.;Shin, Hyung-Seop;Ha, Hongsoo;Oh, Sang-Soo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권4호
    • /
    • pp.34-38
    • /
    • 2019
  • Multilayered high-temperature superconductor coated conductor (CC) tapes are used in an extensive range of applications and are exposed to many stresses such as hoop stress, radial/transverse tensile stress under large Lorentz forces, and thermal stress while cooling if thermal expansion properties differ. Loads induced transversely at the tape surface inevitably create delamination phenomena in the multilayered CC tapes. Thus, delamination behaviors of CC tapes along the c-axis under transverse loading conditions, which can vary based on manufacturing process and constituent layers, must be characterized for applications. The anvil test method was used to mechanically investigate the delamination characteristics of various commercially available Ag-stabilized CC tapes at room temperature and 77 K, finding superior strength at the latter. The wide variations found depended on tape structure and fabrication technique. Fractographic morphologies of delaminated tapes supported the findings under transverse loading conditions.

Study of the effect of varying shapes of holes in energy absorption characteristics on aluminium circular windowed tubes under quasi-static loading

  • Baaskaran, N;Ponappa, K;Shankar, S
    • Structural Engineering and Mechanics
    • /
    • 제70권2호
    • /
    • pp.153-168
    • /
    • 2019
  • In this paper, energy absorption characteristics of circular windowed tubes with different section shapes (circular, ellipse, square, hexagon, polygon and pentagon) are investigated numerically and experimentally. The tube possesses the same material, thickness, height, volume and average cross sectional area which are subjected under axial and oblique quasi-static loading conditions. Numerical model was constructed with FE code ABAQUS/Explicit, the obtained outcome of simulation is in good matching with the experimental data. The energy absorbed, specific energy absorption, crash force efficiency, peak and mean loads along with the collapse modes with their initiation point of simple and windowed tubes were evaluated. The technique for order of preference by similarity ideal solution (TOPSIS) approach was employed for assessing their overall crushing performances. The obtained results confirm that efficacy of crash force indicators have improved by introducing windows and tubes with pentagonal and circular windows achieves the maximum ranking about 0.528 and 0.517, it clearly reveals the above are best window shapes.

Thermoelastic analysis of rotating FGM thick-walled cylindrical pressure vessels under bi-directional thermal loading using disk-form multilayer

  • Fatemeh Ramezani;Mohammad Zamani Nejad
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.139-151
    • /
    • 2024
  • In this research, a semi-analytical solution is presented for computing mechanical displacements and thermal stresses in rotating thick cylindrical pressure vessels made of functionally graded material (FGM). The modulus of elasticity, linear thermal expansion coefficient, and density of the cylinder are assumed to change along the axial direction as a power-law function. It is also assumed that Poisson's ratio and thermal conductivity are constant. This cylinder was subjected to non-uniform internal pressure and thermal loading. Thermal loading varies in two directions. The governing equations are derived by the first-order shear deformation theory (FSDT). Using the multilayer method, a functionally graded (FG) cylinder with variable thickness is divided into n homogenous disks, and n sets of differential equations are obtained. Applying the boundary conditions and continuity conditions between the layers, the solution of this set of equations is obtained. To the best of the researchers' knowledge, in the literature, there is no study carried out bi-directional thermoelastic analysis of clamped-clamped rotating FGM thick-walled cylindrical pressure vessels under variable pressure in the longitudinal direction.