• Title/Summary/Keyword: mechanical joining strength

Search Result 424, Processing Time 0.031 seconds

Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets (알루미늄 합금과 고장력 강판 접합을 위한 헬리컬 SPR의 설계)

  • Kim, W.Y.;Kim, D.B.;Park, J.G.;Kim, D.H.;Kim, K.H.;Lee, I.H.;Cho, H.Y.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.735-742
    • /
    • 2014
  • A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

A Study on Electrically Assisted Solid State Joining of Aluminum and Copper (알루미늄과 구리 간 통전고상접합 연구)

  • Park, J.W.;Choi, H.;Lee, S.;Jeong, H.J.;Hong, S.T.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2020
  • The influence of electric current on the joining properties of aluminum and copper was investigated. Various pulsed electric current conditions were set to the joining specimens followed by pressure. The shear strength of the joint area between aluminum and copper was measured by the lab shear test. In addition, the microstructures of the joint area were observed through a field emission scanning electron microscope, energy dispersive X-ray, and electron backscatter diffraction. The mechanical properties of each phase in the joint region were measured by nano-indentation. As a result, it was confirmed that electrically assisted solid state joining of copper and aluminum could be applied in various industrial fields.

A Feasibility Study on Dissimilar Metals Friction Weld Strength Analysis by Ultrasonic Techniques (초장파에 의한 이종재 마찰용접 강도해석 가능성에 관한 연구)

  • 오세규;김동조
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.47-52
    • /
    • 1986
  • Friction Welds are formed by the mechanisms of diffusion as well as mechanical inter-locking. The severe plastic flow at the interface by the forge action of the process brings the subsurface so close together that detection of any unbounded area becomes very difficult. No reliable method is available so fat to determine the weld quality nondestructively. The paper presents an attempt to determine weld strength quantitatively using the ultrasonic pulseecho method. The new approach calculates the coefficient of reflection based on measured amplitudes of the echoes. This coefficient provides a single quantitative measurement which involves both acoustic energy reflected at the welded interface as well as transmitted across the interface. As a result, it was known that the quantitative relationship between the coefficient and the weld strength (torsional strength) could be drawn.

  • PDF

Effect of Spot Welding Conditions on Spatter and Mechanical Strength Properties (스패터 및 기계적 강도특성에 미치는 점용접 조건의 영향)

  • 서도원;윤호철;전양배;임재규
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.70-75
    • /
    • 2003
  • Spot welding is a process that sheet metals are joined in one or more spot by heating at the faying interface. In this process, the spatter is dispersed from melted area. It has been reported that spatter generation has adverse effects on weld quality. However, no systematic study has been carried out to find out its effect on weld quality in resistance spot welding processes. In this study, specially designed specimen are used to perform experimental investigation of spatter generation and its effect. Major finding of this study show trends in tensile-shear strength for various amounts of spatter generated during spot welding process. Thus, optimum welding conditions are proposed in view of spatter generation and tensile-shear strength. (Received December 11, 2002)

Mechanical Property of Liquid Phase Diffusion Bonded Joint of Rene80/B/Rene80 (Rene 80/B/Rene 80 액상 확산접합부의 기계적 성질)

  • 정재필;강춘식
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.125-133
    • /
    • 1995
  • Rene80 superalloy was liquid phase diffusion bonded by using pure boron (B) as an insert material. As a basic study for the possibility of practical application of this bonding method, hardness and high temperature tensile strength of the bonded joint and metallurgical analysis were investigated. As experimental results, hardness of the bonded joint was homogenized after bonding and the tensile strength at 1144K was obtained to 90% of that of base metal. But there were some problems to be improved also, that means the joint was hardened after bonding due to increase of B content and elongation was much lower than that of base metal. Flat area and (Mo, Cr, W) boride, which should be harmful for bonding strength, were observed on the fractured surface of the tensile tested specimen.

  • PDF

Fatigue Strength Evaluation on the IB-Type Spot Welded Lap Joint of 304 Stainless Steel Part 2 : Strain energy Density (304 스테인레스 박강판 IB형 용접이음재의 피로강도 평가 Part 2 : 변형에너지 밀도에 의한 평가)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.32-37
    • /
    • 1999
  • Since stainless steel plates have good mechanical properties, weldability, appearance and resistance of corrosion, these are traditionally used for vehicles such as the bus and the train. And they are mainly fabricated by spot welding. But fatigue strength of their spot welded joint is considerably influenced by welding conditions as well as geometrical factors. Thus a reasonable and systematic criterion for long life design of spot welded body structure must be established. In this report, strain energy density was analyzed by using 3-dimensional finite element model about the IB-type spot welded lap joint under tension-shear load. Fatigue tests were conducted on them having various thickness, joint angle, lapped length and width. From their results, it was found that fatigue strength of the IB-type spot welded lap joints could be effectively and systematically rearranged by strain energy density at the edge of nugget.

  • PDF

A Study on the Friction Weldability of Carbon Steel (SM45C) to Aluminum Alloy (A6063) (탄소h강(SM45C)과 알루미늄 합금(A6063)의 마찰용접성에 관한 연구)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.57-63
    • /
    • 1998
  • This study deals with the friction weldability of machine structural carbon steel (SM45C) to Al-Mg-Si aluminium alloy (A6063). The bonding strength of friction welded joints, from all mechanical test, exceeded that of A6063 base metal, under the condition of friction time 1.5 sec, upset pressure 80MPa. The friction welded joints under these conditions exhibited tensile strength of 262MPa, bending angle of 90$^{\circ}$ without crack at weld interface and shear strength of 113MPa. Consequently, the friction weldability of SM4C to A6063 was very excellent, and that was possible without special preparation of weld surfaces.

  • PDF

Welding Characteristics of Aluminized Steel Sheet by Nd:YAG Laser(I) - Effects of AI Coating Weight on Weld Strength - (Nd:YAG 레이저를 이용한 알루미늄도금강판의 용접성(I) - 알루미늄 도금부착량이 용접부 강도에 미치는 영향 -)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Ki-Chol
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.65-71
    • /
    • 2007
  • Laser weldability of the aluminized steel for the full penetration welding will be described in this paper. We focused on the effect of Al coating conditions on weld strength. For these objectives, aluminized steel sheets that have various thickness and coating weight were prepared for laser welding. And then, tensile-shear and hardness test were carried out. At the same time, Al contents in weld after laser welding were analyzed and their correlations with mechanical properties were investigated. Besides, as removing partially coating layer, weldability has been investigated according to the position of coating layer. As a result of this study, tensile-shear strength was decreased with increasing Al contents in weld, and Al of coating layer caused grain growth.

A Study on the Initial Bonding Strength of Solder Ball and Au Diffusion at Micro Ball Grid Array Package (${\mu}BGA$ 패키지에서 솔더 볼의 초기 접합강도와 금 확산에 관한 연구)

  • Kim, Kyung-Seob;Lee, Suk;Kim, Heon-Hee;Yoon, Jun-Ho
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2001
  • This paper presents that the affecting factors to the solderability and initial reliability. It is the factor that the coefficient of thermal expansion between package and PCB(Printed Circuit Board), the quantity of solder paste and reflow condition, and Au thickness of the solder ball pad on polyimide tape. As the reflow soldering condition for 48 ${\mu}BGA$ is changed, it is estimated that the quantity of Au diffusion at eutectic Sn-Pb solder surface and initial bonding strength of eutectic Sn-Pb solder and lead free solder. It is the result that quantitative measurement of Au diffusion quantity is difficult, but the shear strength of eutectic Sn-Pb solder joint is 842 mN at first reflow and increases 879 mN at third reflow. The major failure mode in solder is judged solder fracture. So, Au diffusion quantity is more affected by reflow temperature than by the reflow times.

  • PDF

A study on laser welding characteristics of 1500MPa grade ultra high strength steel for automotive application (자동차용 1500MPa급 초고강도강의 레이저 용접 특성에 관한 연구)

  • Choi, Jin-Kang;Kim, Cheol-Hee;Rhee, Se-Hun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.113-113
    • /
    • 2009
  • 세계적으로 환경문제에 대한 관심이 커짐에 따라 연료 효율 향상과 매연을 줄이기 위해 차량 경량화 요구가 증가하는 동시에 안전 규제가 강화되고 있어 높은 강도를 가지는 소재의 적용이 증가하고 있다. 충돌 시 차량 구조를 유지시켜주는 범퍼나 B-필러와 같은 부품에 1500MPa급의 초고강도강이 적용되고 있으며 레이저 용접이 가지는 장점이 많이 알려지면서 그 사용이 증가하는 추세이다. 따라서 레이저 용접에 의한 초고강도강의 용접 특성에 대한 연구가 필요하다. 본 연구에서는 1500MPa급 초고강도강의 레이저 맞대기 용접을 실시하여 단면, 경도 측정, 인장시험을 통해 용접부 특성을 파악하였다. 파이버 레이저와 디스크 레이저를 사용하여 각각의 레이저빔 직경 변화에 따른 입열량 변화에 따라 용접성에 미치는 영향에 대해 알아보았다.

  • PDF