• Title/Summary/Keyword: mechanical joining strength

Search Result 422, Processing Time 0.02 seconds

Patterns and Characteristics of Fatigue Failure in Cruciform Fillet Weld Joint (십자형 필릿 용접부에서의 피로파괴 형상과 특성)

  • Lee, Yong-Bok;Chung, Joon-Ki;Park, Sang-Heup
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.67-72
    • /
    • 2011
  • The proportion of the welding in the production process of machinery, buildings and marine structures is increasing and the joining are mainly conducted by butt and fillet weld. In the case of fillet weld, the shape of structures is complicated depending on the constraint on the geometry of the structures, therefore, the full penetration is mostly difficult. Accordingly, it is necessary to establish safe and economical criteria of design of the structures through the strength based on the penetration state of the fillet weld. Patterns of fatigue failure in cruciform fillet weld jont appear in the form of the root, toe and mixed failure. In the case of toe and mixed failure, the fatigue strength is higher than root failure. Therefore, we have to make the enough depth of penetration or perform the welding work through improving the fatigue strength of cruciform joints in welded structures. So it is necessary to optimize the penetrated depth in the range of the possible mixed failure and find the way in the cost-effective design to lessen the amount of the welding work.

Characteristics of Welded Zone Using Solar Energy Concentration (태양광선을 이용한 용접부 특성)

  • Prasad, K.D.V.;Kim, I.S.;Sung, B.S.;Kim, B.C.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.9-17
    • /
    • 2001
  • In this paper the attempts made by the authors to explore the feasibility of utilising concentrated solar beam radiation for joining engineering thermoplastics such as Acrylonitrilc/Butadiene/Styrene (ABS), Polycarbonate(PC) and Polymethylmethacrylate(PMMA) are presented. In addition, to study the joining of the materials, necessary experimentation with applying primer was performed. Tensile tests were conducted to determine the bond strength achieved at the specimen joint interface. Microscopic examinations of the fractured joints were performed in order to analyse the overall bond quality. Finally, the results in terms of bond strength achieved at the joint interface and energy consumed in the process were compared with those obtained with similar thermoplastic joining technique utilising microwave energy. In conclusion some advantages and limitations were outlined and necessary improvements of the jointing technique were recommended.

  • PDF

A Study on the Mechanical Characteristic in Al 6061 Alloys welded by Friction Stir Welding (Al 6061 합금의 마찰교반접합시 접합부의 역학적 특성에 관한 연구)

  • 방한서;김흥주;고민성;장웅성
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.105-108
    • /
    • 2002
  • Al-alloy is utilized widely as a light-weight material to an automobile, a vessel and many kind of equipment, due to the light-weight and its characteristics that is a good tensile strength, elongation and tenacity for bearing heavy load and weight. Al-alloy has the good property of hot working, cold working and corrosion-resistant. But the exiting fusion welding by using Al has some economical and technical problems, but on the other hand, Friction Stir Welding (FSW) that is new joining method can settle the disadvantages that occur to the fusion welding and Is being applied and extended into the various industry fields. On this study, To analyze accurately the mechanical properties of joining area by FSW in Al 6061 alloy by using finite analysis program with finite element method. The size of HAZ and the thermal distribution is simulated and the mechanical properties around the FSW joining area to the Al-alloy 6061 is examined.

Study on the cold pressure welding by upsetting (업셋팅 을 이용한 냉간압접 에 대한 연구)

  • 안기원;김재도
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.27-34
    • /
    • 1985
  • The mechanical properties and bonding mechanism of aluminum, copper and mild steel have been determined in cold pressure welding. The brittle cover layer to be established by scratch-brushing plays an important role in bond strength and has an influence on the threshold of deformation. The cold pressure welding was achieved at 54% of height reduction in A1-A1, 75% in Cu-Cu, 56% in Al-Cu, and 74% in Cu-steel. The height reduction at which the bond strength of weld interface was the same as the tensile strength of base metal should be over 76% in Al-Al, 82% in Cu-Cu, and 78% in Al-Cu.

  • PDF

A Study on the strengthening of titania ceramic coating layer on the steel substrate (티타니아 세라믹 熔射皮膜의 强度向上에 관한 硏究)

  • 김영식
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.181-189
    • /
    • 1992
  • The purpose of this investigation is to examine the effects of the strengthening treatments on the mechanical properties of the flame-sprayed titania ceramic coating layer. The strengthening treatments for flame sprayed specimens were carried out in 12 different conditions in vaccum furance. The mechanical properties such as microhardness, thermal shock resistance, adhesive strength and erosion resistance were tested for the sprayed specimens after strengthening treatments. And it was clear that the mechanical properties of coating layer were much improved by the strengthening treatments. The results obtained are summarized as follows; 1. It was shown that the metallurgical bond was formed between substrate and coating layer by the strengthening treatments and that thermal shock resistance and adhesive strength were remarkably raised. 2. Microhardness of coating lay was considerably increased by the strengthening treatments. 3. Erosion resistance and porosity of coating layer were slightly improved by the strengthening treatments.

  • PDF

Investigations on electron beam weldability of AlZnMgCu0.5 alloys (AlZnMgCu0.5 합금의 Electron Beam 용접성에 관한 연구)

  • 배석천
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.166-177
    • /
    • 1997
  • The high strength AlZnMgCu0.5 alloy is a light metal with good age hardenability, and has a high tensile and yielding strength. Therefore, it can be used for structures requiring high speciple strength. Even though high strength AlZnMgCu alloy has good mechanical properties, it has a lot of problems in TIG and MIG welding processes. Since lots of high heat absorption is introduced into the weldment during TIG and MIG processes, the microstructural variation and hot cracks take place in heat affected zone. Therefore, the mechanical properties of high strength AlZnMgCu0.5 alloy can be degraded in weldment and heat affected zone. Welding process utilizing high density heat source such as electron beam should be developed to reduce pore and hot cracking, whichare usually accompanied by MIG and TIG welding processes. In this work, electron beam welding process were used with or without AlMg4.5Mn as filler material to avoid the degradation of mechanical properties. Mechanical and metallurgical characteristics were also studied in electron beam weldment and heat affected zone. Moreover hot cracking mechanism was also investigated.

  • PDF

Microstructures and Mechanical Properties of Friction Stir Welded High Strength Steels far Shipbuilding (선급용 고장력강 FSW접합부의 미세조직 및 기계적 성질)

  • 장웅성;최기용
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.67-73
    • /
    • 2002
  • In an attempt to evaluate the feasibility of friction stir welding(FSW) for joining carbon steels, microstructures and mechanical properties of friction stir welded carbon steels with different grain structures were investigated. In comparison of O-type stir zone(SZ) appeared in various aluminium alloys, configuration of SZ in friction stir welded carbon steels displayed U-type. Plastically deformed pearlite band structure was identified to surround the SZ, indicating the existence of so-called thermo-mechanically affected zone(TMAZ). However, the TMAZ of carbon steels was much narrower than that of Al alloys. The microstructures of both stir zone and TMAZ revealed bainite matrix in a conventional carbon steel for shipbuilding, while, in the same region, ferrite matrix microstructures were formed in a low carbon fine grained steel. The conventional carbon steel showed superior stirring workability to that of the fine grained carbon steel. The yield and tensile strength of the friction stir welded joints were comparable to those of the base metals, and the elongation in welded joints demonstrated excellent ductility. Absorbed energy in SZ of the fine grained carbon steel was ten times higher than that obtained from conventional submerged arc weld metal of the same steel. Based on these results, the application FSW to carbon steels was found to be feasible.

Fatigue Characteristics of Laser Welded Zirconium Alloy Thin Sheet (레이저 용접된 박판 지르코늄 합금의 피로특성)

  • Jeong, Dong-Hee;Kim, Jae-Hoon;Yoon, Yong-Keun;Park, Joon-Kyoo;Jeon, Kyeong-Rak
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.59-63
    • /
    • 2012
  • The spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water and maintains geometry from external impact load and cyclic stress by the vibration of nuclear fuel rod, it is necessary to have sufficient strength against dynamic external load and fatigue strength. In this study, the mechanical properties and fatigue characteristics of laser beam welded zircaloy thin sheet are examined. The material used in this study is a zirconium alloy with 0.66 mm of thickness. The fatigue strength under cyclic load was evaluated at stress ratio R=0.1. S-N curves are presented with statistical testing method recommend by JSME- S002 and compared with S-N curves at R.T. and $315^{\circ}C$. As a result of the experimental approach, the design guide of fatigue strength is proposed and the results obtained from this study are expected to be useful data for spacer gird design.

Creep Behavior of Press Joined Molding GMT-Sheet (프레스 접합성형 GMT-Sheet의 크리프 특성)

  • Choi, Yu-Seong;Kim, Hyuk;Kang, Myoung-Goo;Lee, Dong-Gi;Han, Gil-Young;Kim, E-Gon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.171-177
    • /
    • 2000
  • It is essential to understand the creep behavior, which shows how long the characteristics of material maintains because press joined molding GMT-Sheet for recycle is usually used in the severe environment. In this study, we predict joining strength of GMT-Sheet for recycle, when lap length was changed. and we will investigate how compression ratio have an effect on creep behavior in press joined molding. The result of experiment of forming condition concerned with joining problem of GMT-Sheet is as followings joining efficiency. of GMT-Sheet, increases as lap joint length I, increases. Increase of compression ratio causes decrease o f joining efficiency after of GMT-Sheet joining. As the result of creep test, GMT-Sheet is easily damaged in high temperature range, because it is sensitive to the temperature

  • PDF

A Study on the Mechanical Mechanism According to the Groove Shape of T-welded Joint (T-joint 용접부의 형상에 따른 역학적 메카니즘에 관한 연구)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.53-61
    • /
    • 1999
  • The use of thick plate in increasing in recent years due to the rapid expansion of chemical plants, nuclear plants, ships and other industrial plants. Welding is the most popular joining techniques employed in manufacturing industrial machineries and structures. Normally, Groove shapes are prepared according to appropriate rules and regulations such as KS, JIS, AWS, LR, DNV and etc. for various thicknesses of plate. However those groove angles tend to be too large. As a result of large groove angle, residual stress, deformation of material and strength reduction is obtained. Therefore, the reliability and safety of structures and machinery tend to be decreasing. Therefore, in this paper, theoretical as well as experimental study are carried out to find optimum groove shapes for T-welded joint of mild steel. The test specimen are made in same condition with simulation model. Welding residual stresses measurement by sectional cutting method. ⅰ) The mechanical difference for change the thickness of plate and groove angle are not appeared. ⅱ) In a mechanical point of view minimum preparation angle(40°) is more suitable than maximum groove angle(60℃). ⅲ) The measurement value and distribution of welding residual stresses are not effected largely by groove angle. It is mechanical restraint that mainly affect welding residual stresses distribution. In mechanical point of view minimum groove angle is more suitable than maximum groove angle. Therefore, it is appropriate to minimize the size of groove shape in strength and safety.

  • PDF