• Title/Summary/Keyword: mechanical fixation

Search Result 114, Processing Time 0.026 seconds

Surgical Rib Fracture Fixation: Early Operative Intervention Improves Outcomes

  • James Dixon;Iain Rankin;Nicholas Diston;Joaquim Goffin;Iain Stevenson
    • Journal of Chest Surgery
    • /
    • v.57 no.2
    • /
    • pp.120-125
    • /
    • 2024
  • Background: This study aimed to assess the outcomes of patients with complex rib fractures undergoing operative or nonoperative management at our major trauma center. Methods: A retrospective review of all patients who were considered for surgical stabilization of rib fractures (SSRF) at a single major trauma center from May 2016 to September 2022 was performed. Results: In total, 352 patients with complex rib fractures were identified. Thirty-seven patients (11%) fulfilled the criteria for surgical management and underwent SSRF. The SSRF group had a significantly higher proportion of patients with flail chest (32 [86%] vs. 94 [27%], p<0.001) or Injury Severity Score (ISS) >15 (37 [100%] vs. 129 [41%], p<0.001). No significant differences were seen between groups for 1-year mortality. Patients who underwent SSRF within 72 hours were 6 times less likely to develop pneumonia than those in whom SSRF was delayed for over 72 hours (2 [18%] vs. 15 [58%]; odds ratio, 0.163; 95% confidence interval, 0.029-0.909; p=0.036). Prompt SSRF showed non-significant associations with shorter intensive care unit length of stay (6 days vs. 10 days, p=0.140) and duration of mechanical ventilation (5 days vs. 8 days, p=0.177). SSRF was associated with a longer hospital length of stay compared to nonoperative patients with flail chest and/or ISS >15 (19 days vs. 13 days, p=0.012), whilst SSRF within 72 hours was not. Conclusion: Surgical fixation of complex rib fractures improves outcomes in selected patient groups. Delayed surgical fixation was associated with increased rates of pneumonia and a longer hospital length of stay.

A Study on the Optimum Design of Power Vice-Strengthening Device (파워바이스 증력장치 최적설계에 관한 연구)

  • Lee, Gyung-Il;Jung, Yoon-soo;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.69-74
    • /
    • 2017
  • In the current machining industry, machining precision is necessary and machining is being carried out. In this ultra-precision machining industry, the fixation of the workpiece is very important and the degree of machining depends on the degree of fixation of the workpiece. In ultra-precision machining, various methods, such as using a vise chuck or the like and using bolt nut coupling, are used for fixing a workpiece to an existing machine tool. In particular, when the precision gripping force of the jig is insufficient during machining of the ultra-precision mold parts, the machining material shakes due to the vibration or friction, and the machining precision is lowered. In the ultra-precision machining of power transmission parts, such as gears, the accuracy of the product is then determined. In addition, the amount of heat generated during machining has a significant effect on the machining accuracy. This is because the vibration value changes according to the grasp force of the jig that fixes the workpiece, and the change in the calorific value due to the change in the main shaft rotation speed of the ultra-precision machining. The increase in the spindle rotation speed during machining decreased the heat generation during machining, and the machining accuracy was also good, and it was confirmed that the machining heat changed according to the fixed state of the workpiece and the machining accuracy also changed. In this study, we try to optimize the driving part of the power vise by using structural analysis, rather than the power vise, using the basic mechanical-type power unit.

IMPROVEMENT OF FLEXURAL STRENGTH OF BIODEGRADABLE POLYMERIC INTERNAL FIXATION DEVICE BY SOLID STATE EXTRUSION

  • Lim, Soo-Ho;Lim, Jung-Yul;Kim, Soo-Hyun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.23-26
    • /
    • 2003
  • Solid-state extrusion technique was employed for the improvement of mechanical properties of polylactic acid (PLLA) widely used as biodegradable internal fixation devices currently. Cylindrical billets were machined out from the vacuum compression-molded PLLA to have various diameters, and solid-state extrusion of the billets was performed at various drawing rates and at the extrusion temperature of $130^{\circ}C$. Throughout the whole processes the decrease in molecular weight was significantly suppressed to be about $10\%$. Flexural modulus and strength of PLLA increased up to 8.3 GPa and 221 MPa, respectively. Studies on the orientation and crystallinity of extruded PLLA could reveal the effects of billet morphology, draw ratio, and drawing rate on the flexural strengths of PLLA.

  • PDF

Mirror Structure Analysis of High Resolution Optical Imaging Payload (고해상도 광학영상장비 반사경 구조해석)

  • Kwon, Woo-Gun;Kim, Kwang-Ro;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.462-467
    • /
    • 2003
  • For the Space-borne optical imaging payload system design, light weighting and moderate stiffness of mirror and/or mirror fixation device is very important aspects. The front surface of mirror is regulated by optical performance requirement, but the shape of backplate of mirror is to be optimised while satisfing the required stiffness and weight. According to the results, the best shape of backplate cell is triangular. And also related geometric dimensions and the optimised mounting point of MFD(Mirror Fixation Device) is presented. Finally, natural frequencies and shpaes of mirror structure are analysed.

  • PDF

A study on the finite element analysis and machining methods for optimum design of pedicle screw system (척추경나사의 최적설계를 위한 유한요소해석과 형성가공에 관한 연구)

  • 남기우;장성민;이성희;조명우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.634-638
    • /
    • 1997
  • The objectives of this research are to develop lumber and lower-thoracic pedicle fixation system for Korean patients. To achieve the aimed goals, first, optimized shape design process is performed, and finite element methods are applied to evaluate the mechanical strength of the developed fixation system. Second, appropriate machining experiments are carried out to develop optimum machining conditions for titan~um alloys those are known as one of the most difficult-to-cut material. As the results of this research, new pedicle screw system, considering the morphological characteristics of Korean patients, is developed by applying the finite element analysis, optimum shape processing method and optimize design algorithm.

  • PDF

Rapid Prototyping and Reverse Engineering Application for Orthopedic Surgery Planning

  • Ahn Dong-Gyu;Lee Jun-Young;Yang Dong-Yol
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • This paper describes rapid prototyping (RP) and reverse engineering (RE) application for orthopedic surgery planning to improve the efficiency and accuracy of the orthopedic surgery. Using the symmetrical characteristics of the human body, CAD data of undamaged bone of the injured area are generated from a mirror transformation of undamaged bone data for the uninjured area. The physical model before the injury is manufactured from Poly jet RP process. The surgical plan, including the selection of the proper implant, pre-forming of the implant and decision of fixation positions, etc., is determined by a physical simulation using the physical model. In order to examine the applicability and efficiency of the surgical planning technology, two case studies, such as a distal tibia comminuted fracture and an iliac wing fracture of pelvis, are carried out. From the results of the examination, it has been shown that the RP and RE can be applied to orthopedic surgical planning and can be an efficient surgical tool.

Aseptic Humeral Nonunion: What Went Wrong? What to Do? A Retrospective Analysis of 20 Cases

  • Kim, Jinil;Cho, Jae-Woo;Cho, Won-Tae;Cho, Jun-Min;Kim, Namryeol;Kim, Hak Jun;Oh, Jong-Keon;Kim, Jin-Kak
    • Journal of Trauma and Injury
    • /
    • v.29 no.4
    • /
    • pp.129-138
    • /
    • 2016
  • Purpose: Due to recent advances in internal fixation techniques, instrumentation and orthopedic implants there is an increasing number of humeral shaft fracture treated operatively. As a consequence, an increased number nonunion after operative fixation are being referred to our center. The aim of this study is to report the common error during osteosynthesis that may have led to nonunion and present a systematic analytical approach for the management of aseptic humeral shaft nonunion. Methods: In between January 2007 to December 2013, 20 patients with humeral shaft nonunion after operative procedure were treated according to our treatment algorithm. We could analysis x-rays of 12 patients from initial treatment to nonunion. In a subgroup of 12 patients the initial operative procedure were analyzed to determine the error that may have caused nonunion. The following questions were used to examine the cases: 1) Was the fracture biology preserved during the procedure? 2) Does the implant construct have enough stability to allow fracture healing? Results: In 19 out of 20 patients have showed radiographic evidence of union on follow up. One patient has to undergo reoperation because of the technical error with bone graft placement but eventually healed. There were 2 cases wherein the treatment algorithm was not followed. All patients had problems with mechanical stability, and in 13 patients had biologic problems. In the analysis of the initial operative fixation, only one of 12 patients had biologic problems. Conclusion: In our analysis, the common preventable error made during operative fixation of humeral shaft fracture is failure to provide adequate stability for bony union to occur. And with these cases we have demonstrated a systematic analytic management approach that may be used to prevent surgeons from reproducing the same fault and reduce the need for bone grafting.

Prediction of Mechanical Behaviors of Bio-mechanical Materials (생체공학용 척추경 나사의 기계적 거동 예측)

  • Park, Joon-Sik;Choi, Jin Hwa;Cho, Myeong-Woo;Choi, Gil-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.72-78
    • /
    • 2004
  • In this paper, mechanical behaviors of developed pedicle screw system, made of bio-mechanical materials(Ti-6Al-4V, Grade 5), ale predicted using FEM analysis. As a first step, morphologic construction of normal Korean spines and surgical operation convenience are considered to design optimum pedicle screw system. In this step, various design variables are considered as design parameters to develop optimized models. As a next step, tension and bending tests are performed to improve the structural performance of the developed system using finite element method. In this step, required Static compression and bending test specifications by ASTM F-04 25 04 01 are applied to understand the bio-mechanical behaviors of the designed spinal implant system under various load types. As the results of this research, it is possible to develop efficient pedicle screw system, having enough rigidity and fixation to stand any spinal damage under allowable stress conditions.

  • PDF

Comparison of Continuous Mechanical Ventilation and Internal Fixation in Flail Chest Injuries (불안정 흉벽손상에서 지속적 인공호흡법과 내적 늑골고정술의 비교)

  • Gang, Chang-Hui;Jang, In-Seong
    • Journal of Chest Surgery
    • /
    • v.30 no.4
    • /
    • pp.413-418
    • /
    • 1997
  • From January, 1992 to June, 1996, )7 patients with flail chest were treated at Sonnchunhyang university hospital. 15 patients were managed by internal fixation of fractured ribs, whereas the remaining 22 patients were managed by endotracheal intubation and intermittent positive-pressure ventilation alone. There were no difference between two groups in age, sex, the severity of injury to the chest wall and the nature of associated injuries. Average dur'Btion of assisted ventilation was 5.7 $\pm$ 1.7 days in the patients treated by internal fixation versus 8.7 $\pm$ 3.3 days In the patients treated by continuous me hanical ventilation. Average stay in the intensive care unit was 8.3 $\pm$ 3.9 days for the patients treated by internal fixation, whereas it was $13.2\pm4.1$ days in the group treated by continuous mechanical ventilation alone. In the group treated by internal fixation, complications were 3 atelectases(20.0%), 1 pneumonia(6.7%), 2 operative wound problems(12.3%) and 1 barotrauma(6.7%). In the other group, 7 atelectases(31.8%), 4 pneumonitis(18.2%), 2 empyemas(9.1%) and 3 barotraumas(1).6%). The mortality rate was 13.3%(2/15) in the surgically treated patients, whereas it was 22.7%(5122) in the other group. The treatment of flail chest by internal fixation resulted in speedy recovery, decreased complications and mortalities, and better ultimatc cosmetic and functional results.

  • PDF

Effects of Pre-tension and Additional Half-pin on Fracture Stability in Hybrid External Fixator System (강선의 인장력과 추가 Half pin이 혼성외고정장치 시스템의 안정성에 미치는 영향)

  • 김윤혁;이현근;박원만;오종건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.389-392
    • /
    • 2004
  • It is clinically well known that pre-tension of wires increases the fracture stability in ring or hybrid external fixation. In some cases, additional half pin should be necessary to increase the stability when soft tissue impalement occurs during fixation. In this paper, the fracture stability of a hybrid external fixator system with different pre-tension effects and additional half-pins was analysed using FEM to investigate the effects of these pre-tension and half pin on the system stability quantitatively. 3-D finite element models of five different fixator frames were developed using by beam elements. In axial compression analysis, the fracture stiffness was increased maximally 62% as the pre-tension increased. In torsion analysis, in the other hand, there is little variations in the fracture stiffness. Additional half pin increased the system stiffness about 200 %. From the results, proper pre-tension and additional half pin would provide good methods to increase the fracture stability of the hybrid external fixator and provide more surgical options to minimize soft tissue damage at the fracture site.

  • PDF