• Title/Summary/Keyword: mechanical engineering

Search Result 43,141, Processing Time 0.073 seconds

Improving Joint Reliability of Lead-free Solder on Flexible Substrate under Cyclic Bending by Adding Graphene Oxide Powder (그래핀 산화 분말을 첨가한 플렉시블 기판 솔더 접합부의 반복 굽힘 신뢰성 향상)

  • Ko, Yong-Ho;Yu, Dong-Yurl;Son, Junhyuk;Bang, Junghwan;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.43-49
    • /
    • 2019
  • In this study, a new approach using graphene oxide (GO) powder-composited Sn-3.0Ag-0.5Cu(in wt.%) solder paste for improving the bending reliability of solder joints between a flexible substrate and small outline package (SOP) was suggested. The GO addition slightly affected the melting temperature, however, the change in the melting temperature was not significant. Meanwhile, we observed the addition of GO could suppress IMC growth and IMC thickness of solder joint during the reflow process. Moreover, the cyclic bending test was also performed for evaluation of reliability in solder joint and we could improve the cyclic bending reliability of solder joint by adding GO powders. For 0.2 wt.% of GO added to the solder joint, the bending lifetime was increased to 20% greater than that without GO. Pull strength and ductility of the solder joint with GO were also higher than those of the joint without GO and it was assumed that this effect by adding GO could contribute to improve cyclic bending reliability of solder joint.

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.

A Comparison of the Trainees' Evacuation Characteristics according to the Indoor Smoke-fullfill during the Safety Training on Ship (선상안전교육 시 선내 연기충진 여부에 따른 실습생의 피난이동특성 비교)

  • Hwang, Kwang-Il;Cho, Ik-Soon;Yun, Gwi-Ho;Kim, Byeol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.422-429
    • /
    • 2018
  • To make students recognize the danger of fire smoke that may occur in ships and to improve the response capability, spaces for safety educ ation were built inside the training ship, and scenarios were developed. This study is an analysis of the movement characteristics of the students acquire d under each scenario. Followings are the summary of the analysis results. In the non-smoke environments, there was no difference in the velocity of escape movement between the case of without block on the familiar route and the case of with unexpected block. However, when the indoor was filled with smoke, the visibility became very low because of the smoke density and the average velocity was 62.5 % slower than the case where it was not. Regardless of the scenarios, the average equivalent velocity on the complex path was faster than the simple straight path, and the standard deviation was smaller. Under the smoke-fullfilled environment, although the relative velocity probability distributions of the complex passage and the entire passag e are very similar, the inter-individual fluctuation of the relative velocity ratio of the complex passage to that of the entire passage was very large. On the other hand, equivalent velocity could be expressed by the logarithmic function of the visibility. Also, as the tension of the students increased, the equivalent velocities were accelerated on all scenarios.

A Study of Skin Biophysical Parameters and Biomarkers related to the Anatomical Site and Age in Korean Women (한국 여성의 피부 부위 및 연령에 따른 피부 측정 인자와 생물 인자 연구)

  • Cho, Seok-Cheol;Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.413-420
    • /
    • 2015
  • The skin is one of the largest organs in our body and participates in many of the human organism's physiological and pathological events. Skin function were known for self-maintenance and self-repair, mechanical and chemical stress protection, protection against UV and environmental pathogenic micro-organisms, production of vitamin D, and social and psychological function through the physical aspect. The aim of this study was to evaluate the variation of biophysical parameters and to find relation with skin biomarkers in different anatomical site and age in Korean women. About 70 healthy volunteers in age range 20 to 49 were participated in this test. Test areas were the forearms and the cheek. Investigation to determine biophysical parameters on human skin, was carried out using various non-invasive methods. For analysis to skin biomarkers, we studied to examine various biomarkers for the quantitative determination of cortisol, fibronectin, keratin-1, 10, and 11, involucrin, and keratin-6 in human face and forearm. And we measured to skin biophysical parameters for skin anatomical site and age difference with non-invasive methods. As results of measuring site, some parameters were have following significant difference, stratum corneum hydration, trans epidermal water loss and skin color (L and a value). As results of age difference, skin colors were had only significant difference with age. For cortisol, keratin-6, fibronectin, keratin-1, 10, 11 contents, there were no significant difference in age and site. However, involucrin level in the cheeks were the highest for age group 30 ~ 39 compared to other age groups. These results suggest that in individual skin condition may explain detailed skin state variation.

HIGH HEAT FLUX TEST WITH HIP BONDED 35X35X3 BE/CU MOCKUPS FOR THE ITER BLANKET FIRST WALL

  • Lee, Dong-Won;Bae, Young-Dug;Kim, Suk-Kwon;Jung, Hyun-Kyu;Park, Jeong-Yong;Jeong, Yong-Hwan;Choi, Byung-Kwon;Kim, Byoung-Yoon
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.662-669
    • /
    • 2010
  • To develop the manufacturing methods for the blanket first wall (FW) of the International Thermonuclear Experimental Reactor (ITER) and to verify the integrity of the joint, Be/Cu mockups were fabricated and tested at the KoHLT-1 (Korea Heat Load Test facility), a graphite heater facility located at the Korea Atomic Energy Research Institute (KAERI). Since Be and Cu joining is the focus of the present study, the fabricated mockups had a CuCrZr heat sink joined with three Be tiles as an armor material, unlike the original ITER blanket FW, which has a stainless steel structure and coolant tubes. Hot isostatic pressing (HIP) was carried out at $580^{\circ}C$ and 100 MPa for 2 hours as the method for Be/Cu joining. Three interlayers, namely, $1{\mu}mCr/10{\mu}mCu$, $1{\mu}mTi/0.5{\mu}mCr/10{\mu}mCu$, and $5{\mu}mTi/10{\mu}mCu$ were applied as a coating to the Be tiles by a physical vapor deposition (PVD) method. A shear test was performed with the specimens, which were fabricated by the same methods as those used to fabricate the mockups. The average values were 125 MPa to 180 MPa, and the samples with the $1{\mu}mCr/10{\mu}mCu$ interlayer showed the lowest value. No defect or delamination was found in the joints of the mockups by the developed ultrasonic test using a flat-type probe with a 10 MHz frequency and a 0.25 inch diameter. High heat flux (HHF) tests were performed at $1.0\;MW/m^2$ heat flux for each mockup using the given conditions, and the results were analyzed by ANSYS-CFX code. For the test criteria, an expected fatigue lifetime about 1,000 cycles was obtained by analysis with ANSYS-mechanical code. Mockups using the interlayers of $1{\mu}mTi/0.5{\mu}mCr/10{\mu}mCu$ and $5{\mu}mTi/10{\mu}mCu$ survived up to 1,100 cycles over the required number of cycles. However, one of the Be tiles in the other two mockups using the $1{\mu}mCr/10{\mu}mCu$ interlayer was detached during the screening test, and others were detached by discharge after 862 cycles. The integrity of the joints using the proposed interlayers was proven by the HHF test, but the other interlayer requires more study before it can be used for the joining of Be to Cu. Moreover, it was confirmed that the measured temperatures agreed well with the analysis temperatures, which were used to estimate the lifetime and that the developed facility showed its capability of the long time operation.

Development of a 300W Generator for Lightweight Wind Turbine

  • Lee, Hee-Kune;Lee, Hee-Joon;Kim, Sun-Hyung
    • The Journal of Korean Institute of Information Technology
    • /
    • v.15 no.12
    • /
    • pp.181-188
    • /
    • 2017
  • As a population of leisure activities grows and diversifies, there is a great demand for portable and environment-friendly power generation systems. A small wind power generation system is emerging as a suitable power generation equipment to meet these needs. The most important thing when developing a small portable wind turbine is to reduce the weight of the generator and increase the efficiency. The existing 300W wind turbine generator weighs about 10kg, which is heavy to carry. Therefore, a new generator weighing less than 4kg to make it easy to carry with high efficiency has been developed. In addition, considering complicated characteristics of wind volume and topography of Korea, a small wind turbine that can be used in urban and rural areas individually was constructed. Through basic designing and optimization, the lightweight and efficient generator was manufactured. It is a 300W wind turbine designed and fabricated with reduced weight as a prototype. The average output voltage of the generator was 24.7V at 900rpm no-load test. On a load test with the average line voltage 36.8V and the average phase current 2.62A, when the mechanical input was 339.84W, an average voltage output of the generator was measured as 289.5W with efficiency of 85.18%. The generator weight was 3.84kg.

Effects of Intake Gas Mixture Cooling on Enhancement of The Maximum Brake Power in a 2.4 L Hydrogen Spark-ignition Engine (수소 내연기관의 흡기 냉각 방법에 따른 최고 출력 향상에 관한 연구)

  • Kim, Yongrae;Park, Cheolwoong;Oh, Sechul;Choi, Young;Lee, Jeongwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • Since hydrogen has the lower minimum ignition energy than that of gasoline, hydrogen could be also appropriate for the IC engine systems. However, due to the low ignition energy, there might be a 'back-fire' and 'pre-ignition' problems with hydrogen SI(Spark-ignition) combustion. In this research, cooling effects of intake gas mixture on the improvement of the maximum power output were evaluated in a 2.4 L SI engine. There were two ways to cool intake gas mixtures. The first one was cooling intake fresh air by adjusting inter-cooler system after turbocharger. The other one was cooling hydrogen fuel before supplying by using heat ex-changer. Cooling hydrogen was performed under natural aspired condition. The result showed that cooling fresh air from 40 ℃ to 20~30 ℃ improved the maximum brake power up to 6.5~8.6 % and cooling hydrogen fuel as -6 ℃ enhanced the maximum brake power likewise.

A Study on Supporting Small and Medium Enterprises for the Development of Offshore Wind Industry (해상풍력산업 발전을 위한 중소·중견 기업 지원 방안 연구)

  • Choi, Young-Moon;Choi, Jeongho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.167-172
    • /
    • 2021
  • In the situation where expectations for the growth potential of the domestic offshore wind market are increasing due to the bright growth prospect of the global offshore wind market and the motivated plan of the Korean government, domestic and foreign literature on the direction of offshore wind power generation are examined for the successful development of domestic offshore wind power, the introduction of offshore wind power is diagnosed, and improvement plans are presented for the wind power-related system being promoted by the government. In addition, practical support measures are suggested to foster related SMEs. The results of the study are as follows. First, as technology development is mainly focused on large corporations, the development capacity of small and medium manufacturing industry is very low. Therefore, it is necessary to establish and operate a core center led by government agencies to provide technical support with the initiative of national research institutes and large corporations, and universities and national research institutes should strengthen the independence of small and medium-sized enterprises through training and research and development of professional manpower. Second, as a result of the survey on the practical support plan of the company, it was found that there is a need for various support for technology development and commercialization of produced parts.

Extensional Buckling Analysis of Asymmetric Curved Beams Using DQM (미분구적법(DQM)을 사용한 비대칭 곡선 보의 신장 좌굴해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.594-600
    • /
    • 2021
  • Curved beam structures are generally used as components in structures such as railroad bridges and vehicles. The stability analysis of curved beams has been studied by a large number of researchers. Due to the complexities of structural components, it is difficult to obtain an analytical solution for any boundary conditions. In order to overcome these difficulties, the differential quadrature method (DQM) has been applied for a large number of cases. In this study, DQM was used to solve the complicated partial differential equations for buckling analysis of curved beams. The governing differential equation was deduced and solved for beams subjected to uniformly distributed radial loads. Critical loads were calculated with various opening angles, boundary conditions, and parameters. The results of the DQM were compared with exact solutions for available cases, and the DQM gave outstanding accuracy even when only a small number of grid points was used. Critical loads were also calculated for the in-plane inextensional buckling of the asymmetric curved beams, and two theories were compared. The study of a beam with extensibility of the arch axis shows that the effects on the critical loads are significant.

A Study on the Quality Monitoring and Prediction of OTT Traffic in ISP (ISP의 OTT 트래픽 품질모니터링과 예측에 관한 연구)

  • Nam, Chang-Sup
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.115-121
    • /
    • 2021
  • This paper used big data and artificial intelligence technology to predict the rapidly increasing internet traffic. There have been various studies on traffic prediction in the past, but they have not been able to reflect the increasing factors that induce huge Internet traffic such as smartphones and streaming in recent years. In addition, event-like factors such as the release of large-capacity popular games or the provision of new contents by OTT (Over the Top) operators are more difficult to predict in advance. Due to these characteristics, it was impossible for an ISP (Internet Service Provider) to reflect real-time service quality management or traffic forecasts in the network business environment with the existing method. Therefore, in this study, in order to solve this problem, an Internet traffic collection system was constructed that searches, discriminates and collects traffic data in real time, separate from the existing NMS. Through this, the flexibility and elasticity to automatically register the data of the collection target are secured, and real-time network quality monitoring is possible. In addition, a large amount of traffic data collected from the system was analyzed by machine learning (AI) to predict future traffic of OTT operators. Through this, more scientific and systematic prediction was possible, and in addition, it was possible to optimize the interworking between ISP operators and to secure the quality of large-scale OTT services.