• Title/Summary/Keyword: mechanical deterioration

Search Result 464, Processing Time 0.028 seconds

Effect of Moisture Absorption on the Shear Strength of Fiber-reinforced Composites (섬유강화 복합재료의 전단강도에 미치는 흡습의 영향)

  • Kim, Yun-Hae;Kim, Kook-Jin;Han, Joong-Won;Jo, Young-Dae;Bae, Sung-Youl;Moon, Kyoung-Man;Kim, Dong-Hun
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Composite materials are currently used in aero-space industry, sport and leisure industry but it has many problems such as mechanical properties deterioration by moisture absorption. In this study, we appraised interlaminar shear strength with specimen that immersed/ immersed-dried in water environment(distilled/sea) during $100{\sim}200$days. In the result, properties degradation of resin part and silan part by moisture absorption is judged early on main cause of interlaminar shear strength, and later destruction of mechanical bonding between silan part and fiber by moisture absorption is Judged later main cause of interlaminar shear strength. In conclusion, the recovery of interlaminar shear strength is judged to difficult due to interfacial destruction by moisture when pass over irreversible by moisture in composite material.

Mechanical Thrombectomy for Refractory Cerebral Venous Sinus Thrombosis in a Child with Nephrotic Syndrome : A Case Report

  • Jing Ye;Yuan Yang;Weifeng Wan;Xuntai Ma;Lei Liu;Yong Liu;Zhongchun He;Zhengzhou Yuan
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.735-742
    • /
    • 2023
  • Nephrotic syndrome (NS) is associated with cerebral venous sinus thrombosis (CVST), which is a rare cerebrovascular disorder in children. Systemic anticoagulation with heparin is the standard therapy for CVST, and mechanical thrombectomy (MT) has been described as a salvage treatment for adult anticoagulant refractory CVST, However, it has never been reported in children. We describe a case of MT for refractory CVST in a child with NS. A 13-year-old boy with newly diagnosed NS presented to an emergency department with acute headache. A head computed tomography showed acute thrombus in the superior sagittal sinus, straight sinus and transverse sinus. The child was started on heparin therapy, but clinically deteriorated and became unresponsive. In view of the rapid deterioration of the condition after anticoagulation treatment, the patient received intravascular treatment. Several endovascular technologies, such as stent retriever and large bore suction catheter have been adopted. After endovascular treatment, the patient's neurological condition was improved within 24 hours, and magnetic resonance venography of the head demonstrated that the CVST was reduced. The child recovered with normal neurological function at discharge. This case highlights the importance of considering MT for refractory CVST, and we suggest that MT may be considered for refractory CVST with NS in children.

Influencing of drying-wetting cycles on mechanical behaviors of silty clay with different initial moisture content

  • Shi-lin Luo;Da Huang;Jian-bing Peng;Fei Liu;Xiao-ran Gao;Roberto Tomas
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.307-317
    • /
    • 2024
  • To get a better understanding of the effect of drying-wetting cycles (DWC) on the mechanical behaviors of silty clay hiving different initial moisture content (IMC), the direct shear tests were performed on sliding band soil taken from a reservoirinduced landslide at the Three Gorges Reservoir area. The results indicated that, as the increasing number of DWC, the shear stress-displacement curves type changed from strain-hardening to strain-softening, and both the soil peak strengths and strength parameters reduced first and then nearly remain unchanged after a certain number of DWC. The effects of DWC on the cohesion were predominated that on the internal friction angle. The IMC of 17% is regarding as the critical moisture content, and the evolution laws of both peak shear strength and strength parameters presented a reversed 'U' type with the rising of the IMC. Based on it, a strength deterioration evolution model incorporating the influence of IMC and DWC was developed to describe the total degradation degree and degradation rate of strength parameters, and the degradation of strength parameters caused by DWC could be counterbalanced to some extent as the soil IMC close to critical moisture content. The microscopic mechanism for the soil strength caused by the IMC and DWC were discussed separately. The research results are of great significance for further understanding the water-weakening mechanicals of the silty clay subjected to the water absorption/desorption.

Feedback control of intelligent structures with uncertainties and its robustness analysis

  • Cao, Zongjie;Wen, Bangchun;Kuang, Zhenbang
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.327-340
    • /
    • 2003
  • Variations in system parameters due to uncertainties of parameters may result in system performance deterioration and create system internal stability problems. Uncertainties in structural modeling of structures are often considered to ensure that the control system is robust with respect to response errors. So the uncertain concept plays an important role in the analysis and design of the engineering structures. In this paper, the active control of the intelligent structures with the uncertainties is studied and a new method for analyzing the robustness of systems with the uncertainties is presented. Firstly, the system with uncertain parameters is considered as the perturbation of the system with deterministic parameters. Secondly, the feedback control law is designed on the basis of deterministic system. Thirdly, perturbation analysis and robustness analysis of intelligent structures with uncertainties are discussed when the feedback control law is applied to the original system and perturbed system. Combining the convex model of uncertainties with the finite element method, the analysis theory of the robustness of intelligent structures with the uncertainties can be developed. The description and computation of the robustness of intelligent structures with uncertain parameters is obtained. Finally, a numerical example of the application of the present method is given to show the validity of the method.

Improvement of the earthquake resistance of R/C beam-column joints under the influence of P-△ effect and axial force variations using inclined bars

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.389-410
    • /
    • 2004
  • In this study, theoretical and experimental results are presented which were obtained during an investigation of the influence of the $P-{\Delta}$ effect that was caused by the simultaneous changing of the axial load P of the column and the lateral displacement ${\Delta}$ in the external beam-column joints. The increase or decrease of ${\Delta}$ was simultaneous with the increase or decrease of the axial compression load P and caused an additional influence on the aseismic mechanical properties of the joint. A total of 12 reinforced concrete exterior beam-column subassemblies were examined. A new model, which predicts the beam-column joint ultimate shear strength, was used in order to predict the seismic behaviour of beam-column joints subjected to earthquake-type loading plus variable axial load and $P-{\Delta}$ effect. Test data and analytical research demonstrated that axial load changes and $P-{\Delta}$ effect during an earthquake cause significant deterioration in the earthquake-resistance of these structural elements. It was demonstrated that inclined bars in the joint region were effective for reducing the unfavourable impact of the $P-{\Delta}$ effect and axial load changes in these structural elements.

Corrosion Inhibition of Steel Rebar in Concrete with the Coated MCI 2022

  • Bezad Bavarian;Lisa Reiner;Kim, Chong Y.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.63-67
    • /
    • 2002
  • The induced chemical and salt solution in water or admixture are originated to the corrosion process of the steeo rebar. These liquids penetrate into concrete as the accompanied by the chemical reaction and cause to attack the steel rebar in concrete. Concrete surfaces which it exposed to deicing, water and sea water is allowed to enter the chlorides in the structures. To prevent from the source of corrosion and deterioration Is subjected to put an end to corrode or reduce to contaminate on the steel rebar. As this reason the MCI 2022 products are applied to the surface of concrete and steel rebar. The concrete samples were made of to the kind of four, i.e. RF, MR, MS, and MM. Corrosion inhibitor is applied to coat on the surface of concrete after it had been cured for 28days. Specimen were immersed in a 3.5% sodium chloride solution. Concrete specimen were tested to determine the changes of the resistance polarization, Rp, over a 22 weeks period. MCI 2022 is significantly shown the corrosion inhibition of steel rebar in 3.5% NaCl solution. In the each different concrete sample, MS and MM is seemed to be better than others. The results are proofed that MCI 2022 is promised to maintain the inhibition of corrosion with high resistance polarization of the steel rebar in concrete.

  • PDF

Valveless piezoelectric micro-pump exploiting two sided disk type vibrator (디스크형 진동자의 연동 운동을 이용하는 밸브리스 마이크로 압전 펌프)

  • Oh, Jin-Heon;Lim, Jong-Nam;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.159-159
    • /
    • 2009
  • Existence of physical moving parts (ex. check valve) produces several problems (mechanical abrasion, deterioration of reliability, limited temperature performances etc.) in driving pumps. To overcome such problems, we proposed a valveless piezoelectric micro-pump which has new type volume transferring mechanism. The proposed micro-pump has a double faced disk type vibrator that can generate peristaltic motion formed by traveling wave in each surface of a disk. This type of micro-pump is able to apply to a fluid supply system that provides two different kinds of fluid simultaneously. In this paper, we propose a simple and novel design of piezoelectric micro-pump that is peristaltically by piezoelectric actuators and allows the removal of the need for valves of other physically moving parts. The finite elements analysis on the proposed pump model was carried out to verify its operation principle using the commercial analysis software.

  • PDF

Development of Conversion Technology of a Decrepit Diesel Vehicle to the Dedicated Natural Gas Vehicle (노후 디젤차량으로부터 전소 천연가스자동차로의 개조 기술 개발)

  • Ryu, Kyung-Hyun;Kim, Bong-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.73-81
    • /
    • 2006
  • A commercial diesel engine was converted into a dedicated natural gas engine to reduce the exhaust emissions in a retrofit of a diesel-fueled vehicle. The cylinder head and piston were remodeled into engine parts suited for a spark ignition engine using natural gas. The remodeling of the combustion chamber changed the compression ratio from 21.5 to 10.5. A multi-point port injection(MPI) system for a dedicated natural gas engine was also adopted to increase the engine power and torque through improved volumetric efficiency, to allow a rapid engine response to changes in throttle position, and to control the precise equivalence ratio during cold-start and engine warm-up. The performance and exhaust emissions of the retrofitted natural gas engine after remodeling a diesel engine are investigated. The emissions of the retrofitted natural gas engine were low enough to satisfy the limits for a transitional low emission vehicle(TLEV) in Korea. We concluded that a diesel engine can be effectively converted into a dedicated natural gas engine without any deterioration in engine performance or exhaust emissions.

A Relationship Between the EMG Silent Period and Muscle Fatigue of the Masticatory Muscle (저작근의 근전도 휴지기와 근육피로와의 관계)

  • Kim, Tae-Hoon;Yang, Deok-Jin;Kang, Byeong-Gil;Cho, Il-Jun;Lee, Jin;Kim, Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.5
    • /
    • pp.247-254
    • /
    • 2001
  • Silent period(SP) is transient stops of muscle activity that are induced by mechanical or electrical stimulus and the duration of silent period is a important parameter that have been associated with symptoms of masticatory dysfunction. Muscle fatigue is induced by sustained muscular contractions. It is associated with the external manifestations as the inability to maintain a desired force output, muscular tremor, and localized pain. Muscle fatigue is a parameter that have been measured or monitored the deterioration of a performance of muscles. On the study of relationship between SP and masticatory muscle fatigue, Nagasawa suggested that SP increases up to 3 min. from the beginning of clenching when the subjects performed sustained contractions at 50% maximum clenching level. In this paper, in order to evaluate a relationship between SP and muscle fatigue, 10 SPs per 1 minute are measured at 10%, 20%, 50% maximum clenching level. We used the median frequency in order to quantify the degree of muscle fatigue. However, the results shows that the duration of silent period was not significantly affected by differing levels of muscle fatigue. Therefore, we suggest that the SP is not increased or decreased as the results of muscle fatigue, also the origin of the SP generation mechanism is discussed.

  • PDF

Effect of inorganic filler powder to development of treeing in low density polyethylene (저밀도폴리에틸렌에서 무기질의 충전분이 Treeing 진전에 미치는 영향)

  • 김봉협;강도열;김정수;임기조
    • 전기의세계
    • /
    • v.29 no.8
    • /
    • pp.524-531
    • /
    • 1980
  • In order to investigate the effect of inorganic dielectric fine particle mixed in Low Density Polyethylene on the deterioration by treeing, a comparative study for initiation and development of the tree has been carried out between the pure thin film specimen and the same geometrical specimen mixed with a constant weight percent by a defiend particle size of $Al_{2}$O$_{3}$ and SiO$_{2}$, having larger dielectric constants than that of the base material. According to the results, it has been observed that as increasing dielectric constant, the initiation of tree is expedited, however, the development of the tree reached at the surface of filler particles shows the suppressive trends. From these facts, a reasonable interpretation may be possible by considering the effect of intensified electrical field around the tip in the presence of filler particles, that the initiation and the development of tree are a mechanical break down process caused by Maxwell stress due to the concentration of electrical field at the tip. This suppressive effect is specifically suggestive for the reason that a discharge route must be constructed around the particle surface because of the intensified field strength near filler, which, in turn, reduces the geometrical curvature of the tip so that the local intensity of electrical field can be relaxed. Further more an experimental evidence for this assumption was able to observe in this investigation.

  • PDF