• Title/Summary/Keyword: mechanical deterioration

Search Result 464, Processing Time 0.032 seconds

The Modeling Aging Analysis due to Finite Eliment Method on Epoxy-Mica Composites (에폭시-마이카 복합재료의 FEM에 의한 MODELING 열화 해석)

  • Kim, Hee-Gon;Hyun, Jung-Seob;Kim, Hee-Dong;Jo, Han-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1710-1712
    • /
    • 1996
  • This paper was practiced insulation failure test forcing to accelerate on frequency of 420 HZ. There was manufactured generator stator windings for 500MVA thermal plants and selected accelerating deterioration voltage of 5.5kV/mm for electrical aging. Moreover, so as to verification of this experiments, we carried out modeling analysis due to finite element method using to ANSYS5.0 program for common package and imitated multi-stress aging for analyzing electrical and mechanical stress distribution.

  • PDF

Change of Properties by Environment Conditions in Aged ACSR Overhead Conductor (환경적 요인에 의한 노후 가공송전선의 특성변화)

  • Kim Shang-Shu;Kim Byung-Geol;Jang Tae-In;Kang Ji-Won;Lee Dong-Il;Min Byung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.287-291
    • /
    • 2006
  • This paper describes mechanical and electric properties of ACSR $410\;mm^2$ conductor from many of older overhead conductor. Samples of conductors itemized two division according to operation sector, green area, salt and pollution area. Samples of conductors operated various environment conditions have undergone laboratory metallurigical investigation and tensile strength torsional ductility and electrical performance. The steel core were found to have retained their original properties to a large degree in both tensile strength and the number of turns to failure. On the other hand the aluminum conductor showed reductions in tensile strength. To determine the remaining useful life of aged conductor, an unacceptable deterioration level has to established for each diagnostic procedure.

INVESTIGATION ON MATERIAL DEGRADATION OF ALLOY 617 IN HIGH TEMPERATURE IMPURE HELIUM COOLANT

  • Kim, Dong-Jin;Lee, Gyeong-Geun;Jeong, Su-Jin;Kim, Woo-Gon;Park, Ji-Yeon
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.429-436
    • /
    • 2011
  • The corrosion of materials exposed to high temperature helium in a very high temperature reactor is caused by interaction with the impurities in the helium. This interaction then induces high temperature mechanical deterioration. By considering the effect of the impurity concentration on material corrosion, a long-term coolant chemistry guideline can be determined for the range of impurity concentration at which the material is stable for a long time. In this work, surface reactions were investigated by analyzing the thermodynamics and the experimental results for Alloy 617 exposed to controlled impure helium at $950^{\circ}C$. Moreover, the surfaces were examined for the Alloy 617 crept in air and in uncontrolled helium, which was explained by possible surface reactions.

An Evaluation of Reliability of the Spur Gear Using the Accelerated Durability Analysis (가속내구해석을 이용한 평기어의 신뢰성 평가)

  • Kim Chul-Su;Kim Jung-Kyu;Kwon Yeo-Hyoun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.722-727
    • /
    • 2004
  • The gear that is used in various mechanical components occurs easily damages due to the repeated torque and the high oil temperature. The main failure mode of the gear is the surface deterioration with the tooth surface fatigue. Therefore, the life evaluation and the failure analysis of the gear were very important since it may cause fatal damage of entire gear box system. In this paper, the failure mechanism and the life of the gear were evaluated using the durability analysis simulator such as MSC.FATIGUE. Moreover, the reliability analysis model of the spur gear with the accelerated life testing technique was proposed.

  • PDF

Effect of Geometrical Shape and Cold Work on Deformation of the Hydrogen Absorption Metal with Hydrogen Absorption-Desorption Cycling (수소저장-방출싸이클링에 의한 수소저장금속의 변형거동에 관한 형상 및 가공의 영향)

  • Jeong, Y.G.
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.207-216
    • /
    • 2003
  • By using the electrochemical method, the relation between the deformation and the geometrical shape, and the effect of cold work on hydrogen absorption-desorption cycling in palladium were investigated, In order to study this problem, four kinds of the Pd specimens used were plates and bars as cold worked and annealed states. As results, it is found that the deformation of thickness direction in the palladium plates increased whereas other lateral directions decreased. But the palladium bars showed the same deformation ratio in all directions because of uniform distribution of the $\beta$ phase. Grains in the plate specimens were greatly deformed after hydrogenation cycling whereas grains in the bar specimens were pulverized. Also, deterioration of the hydrogen absorption rate of the bar specimen was larger than the plate specimen. And the effect of cold work on hydrogen absorption capacity was relatively small.

Evaluation of the Mechanical Properties of Light Transmitting Concrete using TiO2 Photocatalyst (이산화티탄 광촉매 적용 광투과 콘크리트 역학특성 평가)

  • Seo, Seung-Hoon;Kwon, Shi-Won;Oh, Sang-Keun;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.63-64
    • /
    • 2019
  • Due to the rapid deterioration of the domestic atmosphere, people are suffering from inconveniences such as wearing fine dust masks all the time during outdoor activities. In this study, light transmitting concrete, LEFC(Light Emotion Friendly Concrete), using TiO2 photocatalyst was produced. Since the characteristics of LEFC where acrylic rods are inserted require self-consolidating performance, the purpose was to utilize UHPC(Ultra High Performance Concrete) materials to obtain high-flowability. Further, the compressive strength and flexural strength were evaluated to prevent the reduction of epidemiological performance by utilizing UHPC materials. As such, a basic study was carried out to develop LEFC materials using photocatalyst that can purify the air and stimulate human sensibility.

  • PDF

Study on the Improvement of Inter-laminar Bonding Strength of Carbon/Epoxy Composite Structures (Carbon/Epoxy 복합재료 구조물의 층간강도 향상 연구)

  • Choi Jaeho;Song Heung-Sub;Park In-Seo;Park Seung-Bum;Hwang Byung-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.161-164
    • /
    • 2004
  • In these days, composite materials are applied to the military field like parts of air crafts, rockets, ammunitions and so on. As high pressure is loaded on the composite body, however, cracks or delamination phenomena can be occurred between layers of laminate. These cracks or delamination usually cause a deterioration of mechanical properties under the complicated loads. In this study, methods for improvement of the inter-laminar bonding strength of thick carbon/epoxy composite structures are suggested and discussed in terms of segment bending test.

  • PDF

A Study on the Factors Influencing the Non-Linear Stability of Railway Vehicles (철도차량의 비선형 안정성에 영향을 미치는 인자 연구)

  • Chung, Woo-Jin;Shin, Jeong-Ryol
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.513-518
    • /
    • 2001
  • This research has been performed to estimate the hunting motion hysteresis of railway passenger cars. An old and a new car with almost same structure are chosen as analysis models. To solve effectively a set of simultaneous equations of motion strongly coupled with creep relations, shooting algorithm in which the nonlinear relations are regarded as a two-point boundary value problem is adopted. The bifurcation theory is applied to the dynamic analysis to distinguish differences between linear and nonlinear critical speeds by variation of parameters. It is found that there are some factors and their operation area to make nonlinear critical speed respond to them more sensitivity than linear critical speed. Full-scale roller rig tests are carried out for the validation of the numerical results. Finally, it is concluded that the wear of wheel profile and the stiffness discontinuities of wheelset suspension caused by deterioration have to be considered in the analysis to predict hysteresis of critical speed precisely.

  • PDF

Development of 980MPa Grade Galvannealed Advance High Strength Steel Sheets for Automobile

  • Kim, Byoung-Jin;Kim, Young-Hee;Park, Jun-Young;Lee, Young-Soo;Moon, Man-Been
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.47-51
    • /
    • 2011
  • Main issues in the automotive industry are the reduction of vehicle body weight for energy savings and improvement of crashworthiness for passenger safety. In order to address both these issues, there has recently been increasing application of galvannealed advance high strength steel (GA AHSS) sheets for automobiles. However, GA AHSS sheets have some surface defects such as coating bare spots due to the addition of solid-solution strengthening elements, which result in the deterioration of the galvannealing reaction. In this study, the effects of galvannealed manufacturing conditions on surface and mechanical properties, resistance spot weldability on a laboratory scale, and GA 980 MPa steel sheets produced by commercial continuous galvannealing line (CGL) were investigated.

Rebar corrosion effects on structural behavior of buildings

  • Yuksel, Isa
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1111-1133
    • /
    • 2015
  • Rebar corrosion in concrete is one of the main causes of reduction of service life of reinforced concrete buildings. This paper presents the influence of rebar corrosion on the structural behavior of reinforced concrete (RC) buildings subjected to strong earthquake ground motion. Different levels of rebar corrosion scenarios were applied on a typical four story RC frame. The deteriorated conditions as a result of these scenarios include loss in cross-sectional area and loss of mechanical properties of the reinforcement bars, loss in bond strength, and loss in concrete strength and its modulus of elasticity. Dynamic analyses of the frame with different corrosion scenarios are performed with selected strong earthquake ground motion records. The influences of degradation in both concrete and reinforcement on structural behavior are investigated by comparing the various parameters of the frame under different corrosion scenarios with respect to each other. The results show that the progressive deterioration of the frame due to rebar corrosion causes serious structural behavior changes such as change in failure mode. The intensity, propagation time, and extensity of rebar corrosion have very important effects on the level of degradation of steel and concrete, as well as on the earthquake behavior of the structure.