• 제목/요약/키워드: mechanical design method

검색결과 5,215건 처리시간 0.034초

발포 배율의 향상을 위한 금형 시스템의 공리적 설계 (Axiomatic Design of Mold System for Advance of Foaming Magnitude)

  • 황윤동;차성운
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.637-644
    • /
    • 2001
  • Polymer materials have a lot of merits including the low cost and the easiness of forming. For these reasons they are widely using at many manufacturing industries. Microcellular foaming process appeared at MIT in 1980s to save a quantity of material and increase mechanical properties. There are many process variables in appling microcellular foaming process to the conventional injection molding process. They can be solved by using Axiomatic Design Method which is very useful design method for designing a new product. Its main character is scientific and analytical. The information about the thickness of cavity plays an important role in making an effective foam. The goal of this research is to design mold system for advance of foaming magnitude with axiomatic design method. There is a relation between the change of cavitys thickness and foaming magnitude made after inserting a gas. R/t is a conception that indicate proportion between radius and thickness of cavity in mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of polymer in microcellular foaming process is decreasing gradually as the value of R/t is increasing. In this paper, an advanced mold system was presented by mapping the relation between functional requirements and design parameters.

변위구속조건을 고려한 컴플라이언트 메커니즘 설계 (Compliant Mechanism Design with Displacement Constraint)

  • 김영기;민승재
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1779-1786
    • /
    • 2002
  • When the topology optimization is applied to the design of compliant mechanism, unexpected displacements of input and output port are generated since the displacement control is not included in the formulation. To devise a more precise mechanism, displacement constraint is formulated using the mutual potential energy concept and added to multi-objective function defined with flexibility and stiffness of a structure. The optimization problem is resolved by using Finite Element Method(FEM) and Sequential Linear Programming(SLP). Design examples of compliant mechanism with displacement constraint are presented to validate the proposed design method.

A Case study of an optimal design with structured sampling and simulation

  • Park, Hongjoon;Youngcook Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.46.4-46
    • /
    • 2002
  • This study was motivated how it might be possible to validate structured sampling with orthogonal array for optimal design of a pin. The Taguchi method by orthogonal array, one of the structured sampling methods, has much advantage that is row cost and time saving for experiments. But this method has been applied in limited areas especially for mechanical problems. In this study, we experimented whether the structured sampling is useful for applying optimal design of mechanical elements. For the experiment, we first set up a mechanical problem which was related to determining optimal parameters associated a pin's crack occurred inside a hole. We, then, calculated combination of...

  • PDF

CAD시스템을 이용하여 작성한 도면의 설계검증 (A Computer-Aided Design Checking System for Mechanical Drawings Drawn with CAD Systems)

  • 이성수;소야민랑
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.847-851
    • /
    • 1994
  • Existing CAD systems do not provide the advanced function for systematic checking of design and drafting errors in mechanical drawings. This paper describes a method for systematic checking in mechanical drawings. The checking items are deficiency and redundancy of dimensions, input-errors in dimension figures and symbols, etc. Checking for deficiency and redundancy of global dimensions has been performed applying Graph Theory. This system has been applied to several examples and we have confirmed the feasibility of this design checking method.

  • PDF

Adaptive Parallel Decomposition for Multidisciplinary Design

  • Park, Hyung-Wook;Lee, Se J.;Lee, Hyun-Seop;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.814-819
    • /
    • 2004
  • The conceptual design of a rotorcraft system involves many different analysis disciplines. The decomposition of such a system into several subsystems can make analysis and design more efficient in terms of the total computation time. Adaptive parallel decomposition makes the structure of the overall design problem suitable to apply the multidisciplinary design optimization methodologies and it can exploit parallel computing. This study proposes a decomposition method which adaptively determines the number and sequence of analyses in each sub-problem corresponding to the available number of processors in parallel. A rotorcraft design problem is solved and as a result, the adaptive parallel decomposition method shows better performance than other previous methods for the selected design problem.

반응표면법을 이용한 소형 수직축 풍력터빈 블레이드의 구조 최적화 (Structural Optimization for Small Scale Vertical-Axis Wind Turbine Blade using Response Surface Method)

  • 최찬웅;진지원;강기원
    • 한국유체기계학회 논문집
    • /
    • 제16권4호
    • /
    • pp.22-27
    • /
    • 2013
  • The purpose of this paper is to perform the structural design of the small scale vertical-axis wind turbine (VAWT) blade using a response surface method(RSM). First, the four design factors that have a strong influence on the structural response of blade were selected. Analysis conditions were calculated by using the central composite design(CCD), which is a typical design of experiment for the response surface method(RSM). Also, the significance of the central composite design(CCD) was verified using analysis of variance(ANOVA). The finite element analysis was performed for the selected analytical conditions for the application of response surface method(RSM). Finally, a optimization problem was solved with a objective function of blade weight and a constraint of allowable stress to achieve a optimal structural design of blade.

가중치법을 이용한 농작물 지지대 및 결속장치의 최적설계 (Optimum Design of the Agricultural Support and Binder for Stretching Device)

  • 이만기;김진호;신기열
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.28-33
    • /
    • 2015
  • In this study, the optimal design for the support and the binding device for the protection of crops for the maximum allowable stress of the shape necessary to minimize volume has been proposed. Optimization of the support and the binding device for the crops should be designed to support businesses in terms of profit, in part to reduce the material, and to profit from the ease and speed of working that part of the farmers. We used CATIA for the mechanical design and the ANSYS program for the structural analysis. Additionally, the optimization was performed by PIAnO with seven design variables for the binding device and three parameters for the support. The weight method using a multi-objective function was also determined by the Pareto optimal solution. The volume of the binding device in the optimum design result was found to be reduced by 16%, from $2.278e-005m^3to1.912e-005m^3$. From the result, we confirmed the effectiveness of the design method proposed as a multi-objective function optimization problem.

Aerodynamic Design and Analysis of a Propeller for a Micro Air Vehicle

  • Cho Lee-Sang;Yoon Jae-Min;Han Cheol-Heui;Cho Jin-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1753-1764
    • /
    • 2006
  • A U-80 propeller and its modified version, U-75 propeller, are used for a micro air vehicle. The performance characteristics of a U-80 propeller and a U-75 propeller have not much known in the published literature. Thus, their aerodynamic characteristics are investigated using a lifting surface numerical method. The lifting surface method is validated by comparing computed results with measured data in a wind tunnel. From the computed results, it is found that the U-75 propeller produces larger thrust with higher efficiency than the U-80 propeller. To enhance the performance of these propellers, a new propeller is designed by following the sequential design procedures with the design parameters such as hub-tip ratio, maximum camber and its position, and chord length distribution along the radial direction. The performance of the designed propeller is shown to be improved much comparing with those of both the U-80 and U-75 propellers.

기계 구조의 강건 설계를 위한 최적화 기법의 개발 (Development of an Optimization Technique for Robust Design of Mechanical Structures)

  • 정도현;이병채
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.215-224
    • /
    • 2000
  • In order to reduce the variation effects of uncertainties in the engineering environments, new robust optimization method, which considers the uncertainties in design process, is proposed. Both design variables and system parameters are considered as random variables about their nominal values. To ensure the robustness of performance function, a new objective is set to minimize the variance of that function. Constraint variations are handled by introducing probability constraints. Probability constraints are solved by the advanced first order second moment (AFOSM) method based on the reliability theory. The proposed robust optimization method has an advantage that the second derivatives of the constraints are not required. The suggested method is examined by solving three examples and the results are compared with those for deterministic case and those available in literature.

준해석 설계민감도를 위한 변위하중법 (Displacement-Load Method for Semi-Analytical Design Sensitivity Analysis)

  • 유정훈;김흥석;이태희
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1590-1597
    • /
    • 2004
  • Three methods of design sensitivity analysis for structures such as numerical method, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis can provide very exact result, it is difficult to implement into practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable fur most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate in nonlinear design sensitivity analysis because its computational cost depends on the number of design variables and large numerical errors can be included. Thus the semi-analytical method is more suitable for complicated design problems. Moreover, semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure fur the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and the computational technique is proposed for evaluating the partial differentiation of internal nodal force, so called pseudo-load. Numerical examples coupled with commercial finite element package are shown to verify usefulness of proposed semi-analytical sensitivity analysis procedure and computational technique for pseudo-load.