• Title/Summary/Keyword: mechanical character

Search Result 160, Processing Time 0.022 seconds

A Data Driven Motion Generation for Driving Simulators Using Motion Texture (모션 텍스처를 이용한 차량 시뮬레이터의 통합)

  • Cha, Moo-Hyun;Han, Soon-Hung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.747-755
    • /
    • 2007
  • To improve the reality of motion simulator, the method of data-driven motion generation has been introduced to simply record and replay the motion of real vehicles. We can achieve high quality of reality from real samples, but it has no interactions between users and simulations. However, in character animation, user controllable motions are generated by the database made up of motion capture signals and appropriate control algorithms. In this study, as a tool for the interactive data-driven driving simulator, we proposed a new motion generation method. We sample the motion data from a real vehicle, transform the data into the appropriate data structure(motion block), and store a series of them into a database. While simulation, our system searches and synthesizes optimal motion blocks from database and generates motion stream reflecting current simulation conditions and parameterized user demands. We demonstrate the value of the proposed method through experiments with the integrated motion platform system.

A Modeling of Flame Initiation and Its Development in SI Engines (SI 기관에서 초기 화염의 생성 및 성장에 대한 모델링)

  • Song, Jeonghoon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.288-298
    • /
    • 1999
  • In spark ignited engines, the electrical spark not only sets the time for the onset of combustion but also is able to greatly influence the character of the initial flame growth and the subsequent combustion, and thereby can influence engine performance. The relative importance of the ignition energy is particularly high under lean or high residual gas or exhaust gas recirculation (EGR). In this study, a modeling of flame Initiation and its development is proposed. Submodels consist in representing of cylinder pressure and temperature, heat transfer to cylinder wall, and flame kernel heat transfer to ambient air and to spark plug electrodes. The breakdown process and the subsequent electrical power input initially control the kernel growth while intermediate growth is mainly dominated by diffusion or conduction. Then, the flame propagates by the chemical energy, and laminar and turbulent flame velocity.

Recognition and classification of dimension set for automatic input of mechanical drawings (기계 도면의 자동 입력을 위한 치수 집합의 인식 및 분류)

  • 정윤수;박길흠
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.114-125
    • /
    • 1997
  • This paper presents a method that automatically recognizes dimension sets from the mechanical drawings, and that classifies 6 types dimension sets according to functional purpose. In the proposed method, the object and closed-loop symbols are separated from the character-free drawings. Then object lines and interpretation lines are vectorized. And, after recognizing dimension sets(consistings of arrowhead, shape line, tail lines, extension lines, text-string, and feature control frame), we classify recognized dimension sets as horizontal, vertical, angular, diametral, radial, and leader dimension sets. Finally the proposed method converts classified dimension sets into AutoCAD data by using AutoLisp language. By using the methods of geometric modeling, the proposed method readily recognized and classifies dimension sets from complex drawings. Experimetnal results are presented, which are obtained by applying the proposed method to drawings drawn in compliance with the KS drafting standard.

  • PDF

Recognition of dimension lines based on extraction of the objet in mechanical drawings (기계 도면에서 객체의 분리 추출에 기반한 치수선의 인식)

  • 정영수;박길흠
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.120-131
    • /
    • 1997
  • This paper prsents a new method that automatically recognizes the dimension lines (consisting of shape lines, tail lines and extension lines) from the mechanical drawings. In the proposed method, the object and closed-loop symbols are separated from the character-free drawings. Then the object lines and interpretation lines are vectorized by using several techniques such as thinning, line-vectorization, and vector-clustering. Finally, after recognizing arrowheads by using pattern matching, we recognize dimension lines from interpretation lines by using arrohead's directional vector and centroid. By using the methods of geometric modeling and mathematical operation, the proposed method readility recognizes the dimension lines from complex drawings. Experimental resuls are presented, which are obtained by applying the proposed method to drawings drawn in compliance with the KS drafting standard.

  • PDF

Conversion of the Sonic Conductance C and the Critical Pressure Ratio b into the Airflow Coefficient ${\mu}$

  • Grymek Szymon;Kiczkowiak Tomasz
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1706-1710
    • /
    • 2005
  • In a case of computer simulation used for the verification of pneumatic system performance one of the main problems is that various parameters can be used to describe flow characteristics of the system components. The Standard ISO 6358 offers two parameters: the sonic conductance C and the critical static pressure ratio b, but the parameters can not be directly utilised in an analysis of a pneumatic system. In the standard analysis there is applied the airflow coefficient ${\mu}$, but it is not presented in the vendors' catalogues. In the paper the numerical algorithm for calculation of the airflow coefficient ${\mu}$. (which is required for computer simulation) as a function of sonic conductance C and a critical pressure ratio b (recommended by the standard) is presented. Additionally, because of the iterative character of the described algorithm, an artificial neural network approach to solve the problem is proposed.

Hybrid Position/Force Control of the Direct-Drive Robot Using Learning Controller (학습제어기를 이용한 직접구동형 로봇의 하이브리드 위치/힘 제어)

  • Hwang, Yong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.653-660
    • /
    • 2000
  • The automatization by industrial robot of today is merely rely on to the simple position repeating works, but requirements of research and development to the force control which would adapt positively to various restriction or contacting works to environment. In this paper, a learning control algorithm using, neural networks is proposed for the position and force control by a direct-drive robot. The proposed controller is the feedback controller to which the learning function of neural network is added on to and has a character of improving controller's efficiency by learning. The effectiveness of the proposed algorithm is demonstrated by the experiment on the hybrid position and force control of a parallelogram link robot with a force sensor.

Compressibility Factor Effect on the Turbulence Heat Transfer of Super-critical Carbon Dioxide by an Elliptic-blending Second Moment Closure (타원혼합모형을 이용한 초임계상태 이산화탄소의 압축성계수에 의한 난류열전달 특성)

  • Han, Seong-Ho;Seo, Jeong-Sik;Shin, Jung-Kun;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.40-50
    • /
    • 2007
  • The present contribution describes the application of elliptic-blending second moment closure to predict the gas cooling process of turbulent super-critical carbon dioxide flow in a square cross-sectioned duct. The gas cooling process under super-critical state experiences a drastic change in thermodynamic and transport properties. Redistributive terms in the Reynolds stress and turbulent heat flux equations are modeled by an elliptic-blending second moment closure in order to represent strongly non-homogeneous effects produced by the presence of walls. The main feature of Durbin's elliptic relaxation second moment closure that accounts for the nonlocal character of pressure-velocity gradient correlation and the near-wall inhomogeneity guaranteed by the elliptic blending second moment closure.

An Experimental Analysis on the Thermal Plasma Characteristics to the Geometry in Non-Transferred Torch (비이송식 플라즈마 토치 구조에 따른 열 플라즈마 특성 시험)

  • Jeong, An-Mok;Jun, Euy-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.89-94
    • /
    • 2009
  • The influence on a stability of thermal plasma has been investigated in an electrode structure of non-transferred plasma torch. The variations of dynamic characteristic of the arc voltage was analyzed and compared in terms of voltage character and nozzle types for both the step-shaped nozzles and magnetic-approved cylindrical nozzle. From the experimental results, an electrode gap, flow rate of arc gas, and currents are considered as major operational parameters. As conclusion, it was assured that a torch with step-shaped nozzles of magnetic-approved type produce the stable plasma jet.

  • PDF

A Study on Efficient Roughing of Impeller with 5-Axis NC Machine (임펠러의 효율적인 5축 NC 황삭가공에 관한 연구)

  • Cho, Hwan-Young;Jang, Dong-Kyu;Lee, Hi-Koan;Yang, Gyun-Eui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1917-1924
    • /
    • 2003
  • This paper proposes a roughing path generation method fer machining impeller with 5-axis machining center. Traditional researches are focus on finishing for machining impeller. To achieve efficient machining, roughing method must be studied. The proposed method consists two steps : One is to select optimal tool size and tool attitude by dividing cutting area into two regions to reduce cutting time. The regions are automatically divided by character point on the geometry of impeller blade. After dividing, the tool of the optimal size is selected for each divided region. The other is avoidance of tool interference. Tool interference in cutting areas is avoided by checking the distance between tool axis vector and ruling line on blade surface or approximated plan between ruling line. Using this method, the cutting time is reduced efficiently.

Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites

  • Khalaf, Basima Salman;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • This research is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size beam reinforced with graphene platelets (GPLs) based on geometric imperfection effects. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. The micro-size beam is considered to be perfect (ideal) or imperfect. Buckling mode shape of the micro-size beam has been assumed as geometric imperfection. Modified couple stress theory has been used for describing scale-dependent character of the beam having micro dimension. Via an analytical procedure, post-buckling path of the micro-size beam has been derived. It will be demonstrated that nonlinear buckling characteristics of the micro-size beam are dependent on geometric imperfection amplitude, thermal loading, graphene distribution and couple stress effects.