• Title/Summary/Keyword: mechanical behavior and fracture characteristics

Search Result 151, Processing Time 0.034 seconds

Characteristics of High Temperature Fatigue Fracture in Spring Steels after Shot Peening (쇼트피닝 가공한 스프링강의 고온 피로 파괴 특성에 관한 연구)

  • Park, Keyung-Dong;Shin, Yeong-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.1-6
    • /
    • 2006
  • The lightness of components that was required in automobile and machinery industry requires high strength of components. In particular, manufacturing process and new materials development for solving the fatigue facture problem attendant upon high strength of suspension of automobile are actively advanced. In this paper, the effect of compressive residual stress of spring steel(JISG SUP-9)by shot-peening on fatigue crack growth characteristics in high temperature($100^{\circ}C,\;150^{\circ}C,\;180^{\circ}C$)was investigated with considering fracture mechanics. So, we can obtaint the followings. (1) Compressive residual stress is decreased with increasing the test temperature. (2) The effect of compressive residual stress on fatigue crack growth behavior in high temperature is increased below ${\Delta}K=17{\sim}19MPa{\sqrt{m}}$. (3) It was investigated by SEM that the constraint of compress residual stress for plastic zone of fatigue crack tip was decreased in high temperature as compared with room temperature.

A Study on the Fatigue Crack Propagation of Partly Heat Treated Medium Carbon Steel (부분 열처리한 기계 구조용 탄소강의 피로균열 전파에 관한 연구)

  • 김상철;김선용
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 1993
  • It is well known that mechanisms of fracture and fatigue crack propagation depend upon various characteristics such as environmental condition. crack geometry. heat treatment and mechanical properties. It seems to be important for the detailed evaluation of structural integrity to investigate the effects of the above factors on the behavior of structural components which contain flaws. In this paper. it is studied that the fatigue crack propagation of partly heat treated medium carbon steel (SM45C) by high frequency heat treatment.

  • PDF

The Strength and Fracture Behavior characteristics of Irradiated Zr-2.5Nb CANDU Pressure Tube Materials (Zr-2.5Nb 중수로 압력관의 조사후 강도 및 파괴거동 특성)

  • An, Sang-Bok;Kim, Yeong-Seok;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.510-519
    • /
    • 2001
  • The tensile and fracture toughness tests have been conducted to investigate the degradations of mechanical properties induced mainly by neutron irradiations in Zr-2.5Nb CANDU pressure tube materials operated in Wolsung Unit-1. the tests were performed at room, 150, 200, 250, 300 $\^{C}$ for the irradiated and unirradiated specimens in hot cell. The specimens were directly machined from the tube retaining original curvature using specially designed electric discharge machine(EDM). From the tensile tests of the irradiated specimens, it was found that tensile strength was increased and total elongation was decreased compared to those of the unirradiated ones. The active voltages in the fracture toughness tests for the irradiated showed the discontinuous abrupt increases caused by crack jumping in lower temperature. In the crack resistance curves we found the stable crack growth in the unirradiated, whereas the unstable and three crack growth stages in the irradiated specimens due to the accumulated irradiation defects. The various fracture characteristic values in the irradiated are remarkably lower than those of the unirradiated. Through the fractography, we found in the irradiated that smaller dimple and shorter fissures than the unirradiated, and that the fractured surface had three regions that were flat, transition and slant/shear area. These can explain the difference in the crack growth characteristic values of the irradiated and the unirradiated ones.

In-field Evaluation of Structural Strength and Reliability Using Advanced Indentation System (Advanced Indentation System을 이용한 현장에서의 구조강도 건전성 평가)

  • Choi, Yeol;Son, Dong-Il;Jang, Jae-Il;Kwon, Dong-Il
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.230-237
    • /
    • 2001
  • For the structural integrity of large and complex structures such as railway vehicle, the in-field diagnosis of mechanical properties of the structures is needed, and especially, the mechanical characteristics of the weldment must be carefully evaluated. But, conventional standard testing methods having destructive procedures are not applicable to in-field assessment of mechanical property variations within weldment because they needs the limitations of specimen size and geometry. In this paper, to overcome this problems, the advanced indentation technique (AIS) is introduced for simple and non-destructive/in-field testing of weldment of industrial structures. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. First of all, flow properties such as yield strength, tensile strength and work hardening index can be evaluated through the analysis of the deformation behavior beneath the spherical indenter. Additionally, case studies of advanced indentation techniques are introduced.

  • PDF

Impact Tensile Properties and Intergranular Fracture Behavior with Strain Rate Variations of Al-M g-X (X = Cr,Si) Alloy

  • Chang-Suk Han;Min-Gyu Chun;Sung-Soon Park;Seung-In Lim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.330-340
    • /
    • 2024
  • Al-Mg-Si alloys are light weight and have excellent corrosion resistance, and are attracting attention as a liner material for high-pressure hydrogen containers in hydrogen fuel cell vehicles. Because it has excellent plastic hardening properties, it is also applied to car body panel materials, but it is moderate in strength, so research to improve the strength by adding Si-rich or Cu is in progress. So far, the authors have conducted research on the intergranular fracture of alloys with excessive Si addition from the macroscopic mechanical point of view, such as specimen shape. To evaluate their impact tensile properties, the split-Hopkinson bar impact test was performed using thin plate specimens of coarse and fine grain alloys of Al-Mg-X (X = Cr,Si) alloy. The effect of the shape of the specimen on the characteristics was studied through finite element method (FEM) analysis. As a result, it was found that the intergranular fracture of the alloy with excessive Si depended on the specimen width (W)/grain size (d), which can be expressed by the specimen size and grain size. As W/d decreases, the intergranular fracture transforms into a transgranular fracture. As the strain rate increases, the fracture elongation decreases, and the fracture surface of the intergranular fracture becomes more brittle. It was confirmed that intergranular fracture occurred in the high strain rate region even in materials with small grain sizes.

Grain-Based Distinct Element Modeling of Thermoshearing of Rock Fracture: DECOVALEX-2023 Task G (입자기반 개별요소모델을 이용한 암석 균열의 Thermoshearing 거동 해석: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook, Park;Li, Zhuang;Jeong Seok, Yoon;Chan-Hee, Park;Changlun, Sun;Changsoo, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.568-585
    • /
    • 2022
  • In the present study, we proposed a numerical method for simulating thermally induced fracture slip using a grain-based distinct element model (GBDEM). As a part of DECOVALEX-2023, the thermo-mechanical loading test on a saw-cut rock fracture conducted at the Korea Institute of Civil Engineering and Building Technology was simulated. In the numerical model, the rock sample including a saw-cut fracture was represented as a group of random Voronoi polyhedra. Then, the coupled thermo-mechanical behavior of grains and their interfaces was calculated using 3DEC. The key concerns focused on the temperature evolution, thermally induced principal stress increment, and fracture normal and shear displacements under thermo-mechanical loading. The comparisons between laboratory experimental results and the numerical results revealed that the numerical model reasonably captured the heat transfer and heat loss characteristics of the rock specimen, the horizontal stress increment due to constrained displacement, and the progressive shear failure of the fracture. However, the onset of the fracture slip and the magnitudes of stress increment and fracture displacement showed discrepancies between the numerical and experimental results. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study.

Evaluation of Thermal Shock Damage of Metal Matrix Composite Using Ultasonics (초음파를 이용한 금속기지 복합재료의 열충격 손상 평가)

  • Kang, Moon-Phil;Lee, Min-Rae;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1480-1487
    • /
    • 2005
  • Metal matrix composites(MMCs) have been rapidly becoming one of the strongest candidates for structural materials fur many high temperature application. However, among the various high temperature environments in which metal matrix composites was applied, thermal shock is known to cause significant degradation in most MMC system. Due to the appreciable difference in coefficient of thermal expansion(CTE) between reinforcement and metal matrix, internal stresses are generated following temperature changes. Infernal stresses affect degradation of mechanical properties of MMC by causing microscopic damage in interface and matrix during thermal cycling. Therefore, the nondestructive evaluation on thermal shock damage behavior of SiC/A16061 composite has been carried out using ultrasonics. For this study, SiC fiber reinforced metal matrix composite specimens fabricated by a squeeze casting technique were thermally cycled in the temperature range 298$\~$673 K up to 1000cyc1es. Three point bending test was conducted to investigate the efffct of thermal shock damage on mechanical properties. The relationship between thermal shock damage behavior and the propagation characteristics of surface wave and SH-ultrasonic wave was discussed by considering the result of SEM observation of fracture surface.

A Study on Characteristics of Strength and Fracture of Austempered Graphite Cast Iron (오스템퍼 회주철의 파괴강도 특성에 관한 연구)

  • 이하성;강동명;이영상
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 1996
  • The mechanical properties and fatigue crack growth rate fracture toughness of permanent mould cast austempered gray cast iron(AGI) were compared to those of sand cast AGI. Specimens prepared for tensile, impact and fatigue test were austenitized at $900^{\circ}C$ and austempered at $270^{\circ}C$, $320^{\circ}C$, $370^{\circ}C$ and $420^{\circ}C$ for 1 hour. The strength, impact and fatigue crack propagation behavior of permanent mold cast AGI were found to be superior to those of sand cast AGI. Maximum values in tensile strength, BHN, Charpy impact energy, were obtained at the austempering temperature of $270^{\circ}C$. Samely, the slowest fatigue crack growth rate was appeared at the austempering temperature of $270^{\circ}C$. But ductility of AGI was not improved by permanent mould casting.

  • PDF

Plastic Deformation Behavior of Al-Si Alloy (Al-Si 합금의 소성변형 거동)

  • Kwon Y. N.;Kim S. W.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.130-133
    • /
    • 2005
  • The effect of microstructural characteristics of A356 alloys on tensile behavior was studied ill the present study. To authors' knowledge, the microstructural effect on mechanical properties of A356 alloy has not been well understood even though this alloy system is one of the most widely used alloys for the industrial purpose. Specially, quantitative relationship between properties like ductility and fracture toughness with microstructural features is lacking. In the present study, three processing routes was used to fabricate samples with different microstructures like size and distribution of primary alpha and eutectic phases. Also, compressive deformation was used to close casting porosity for the cast samples. Tensile behavior was examine and discussed in terms of microstructural aspects.

  • PDF

A study on the Fracture Mechanism and the Test for Strength Properties of the Granite-Gneiss (화강편마암의 강도특성 실험 및 파괴메카니즘에 관한 연구)

  • 최안식;조만섭;김영석
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.165-172
    • /
    • 2000
  • When tunnels or underground structures are constructed in anisotropic rock mass, designers and constructors have to consider the anisotropic characteristics in rock mass because their physical and mechanical properties are depended on the anisotropic angles(${\beta}$). In this study, therefore, we have first investigated the mechanical behavior of the gneiss specimen from lab. tests, and then have analysed the behavior of specimens for to the transversely isotropic model in elastic medium using the FLAC program. The results of this study were summarized as follows; 1) In the result of the variation tests, in general, the properties of strength were depended on the angle of inclination in spite of the hard rock. And except for the shear strength test, the lowest and peak stress were appeared at 60$^{\circ}$ and 90$^{\circ}$respectively. 2) The results of specimen modeling analysis using FDM well indicated the mechanical behaviors of the specimen of transversely isotropic model.

  • PDF