• Title/Summary/Keyword: mechanical and thermal behavior

Search Result 986, Processing Time 0.025 seconds

Analysis of Residual Stress on Dissimilar Butt Joint by TIG Assisted Hybrid Friction Stir Welding (TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 잔류응력 해석)

  • Bang, Hee-Seon;Ro, Chan-Seoung;Bijoy, M.S.;Bang, Han-Sur;Lee, Yoon-Ki
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.47-53
    • /
    • 2012
  • This paper aimed to study and understand the mechanical phenomena of thermal elasto-plastic behavior on the dissimilar butt joint (Al 6061-T6 and STS304) by TIG assisted Friction Stir Welding. Heat conduction and residual stress analysis is carried out using in-house solver. Two-dimensional results of the heat distribution and residual stresses in dissimilar joint for particular tool geometry and material properties are presented. The predicted stress along longitudinal direction in Al 6061-T6 and STS304 are approximately between 12-15% of their respective yield strengths. A comparison is made between experimentally measured and numerically predicted equivalent residual stress values.

Recycling Method of Used Indium Tin Oxide Targets (폐 인듐주석산화물 타겟의 재활용 기술)

  • Lee, Young-In;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.174-179
    • /
    • 2012
  • In this study, we demonstrated a simple and eco-friendly method, including mechanical polishing and attrition milling processes, to recycle sputtered indium tin oxide targets to indium tin oxide nanopowders and targets for sputtered transparent conductive films. The utilized indium tin oxide target was first pulverized to a powder of sub- to a few- micrometer size by polishing using a diamond particle coated polishing wheel. The calcination of the crushed indium tin oxide powder was carried out at $1000^{\circ}C$ for 1 h, based on the thermal behavior of the indium tin oxide powder; then, the powders were downsized to nanometer size by attrition milling. The average particle size of the indium tin oxide nanopowder was decreased by increasing attrition milling time and was approximately 30 nm after attrition milling for 15 h. The morphology, chemical composition, and microstructure of the recycled indium tin oxide nanopowder were investigated by FE-SEM, EDX, and TEM. A fully dense indium tin oxide sintered specimen with 97.4% of relative density was fabricated using the recycled indium tin oxide nanopowders under atmospheric pressure at $1500^{\circ}C$ for 4 h. The microstructure, phase, and purity of the indium tin oxide target were examined by FE-SEM, XRD, and ICP-MS.

Dependence of cation ratio in Oxynitride Glasses on the plasma etching rate

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.44.2-44.2
    • /
    • 2009
  • Polycrystalline materials suchas yttria and alumina have been applied as a plasma resisting material for the plasma processing chamber. However, polycrystal line material may easily generate particles and the particles are sources of contamination during the plasma enhanced process. Amorphous material can be suitable to prevent particle generation due to absence of grain-boundaries. We manufactured nitrogen-containing $SiO_2-Al_2O_3-Y_2O_3$ based glasses with various contents of silicon and fixed nitrogen content. The thermal properties, mechanical properties and plasma etching rate were evaluated and compared for the different composition samples. The plasma etching behavior was estimated using XPS with depth profiling. From the result, the plasma etching rate highly depends on the silicon content and it may results from very low volatile temperature of SiF4 generated during plasma etching. The silicon concentration at the plasma etched surface was very low besides the concentration of yttrium and aluminum was relatively high than that of silicon due to high volatile temperature of fluorine compounds which consisted with aluminum and yttrium. Therefore, we conclude that the samples having low silicon content should be considered to obtain low plasma etching rate for the plasma resisting material.

  • PDF

Status of the International Cooperation Project, DECOVALEX for THM Coupling Analysis (THM 복합거동 해석을 위한 DECOVALEX 국제공동연구 현황)

  • Kwon, Sang-Ki;Cho, Won-Jin;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.323-338
    • /
    • 2007
  • For the assessment of the performance and safety of a deep underground radioactive repository system, the thermal, hydraulic, mechanical, and chemical behaviors and their coupling should be studied. In order to analyze the THMC coupling behavior more effectively, which requires complex mathematical models and modelling techniques, DECOVALEX international cooperation project was launched in 1992. Since its beginning, four major stages of the project were successfully completed and THMC modelling techniques for various conditions could be developed. In this study, the current status and major achievements from the project were reviewed and possible benefits of the participation to the project were discussed.

  • PDF

Computational Fluid Dynamics Analysis of Plate Type Reformer for MCFC (용융탄산염 연료전지용 평판형 개질기 열유동 전산유체역학 해석)

  • Shin, Dong-Hoon;Seo, Hye-Gyung;Lim, Hee-Chun;Lee, Sang-Duk
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.4
    • /
    • pp.403-408
    • /
    • 2006
  • The plate reformer consisting of combustion chamber and reforming chamber for 25 kW MCFC stack has been operated and computational fluid dynamics was applied to estimate reactions and thermal fluid behavior in the reformer. The methane air 2-stage reaction was assumed in the combustion chamber, and three step steam reforming reactions were included in the calculation. Flow uniformity, reaction rate and species distribution, and temperature distribution were analyzed. In particular, temperature distribution was compared with the measurements to show good agreement in the combustion chamber, however, inappropriate agreement in the reformer chamber.

A Study on the Vibration Behavior of Composite Laminate under Tensile Loading by ESPI (ESPI에 의한 인장하중 하에서의 복합재 적층판의 진동 거동에 관한 연구)

  • Yang, Seung-Pil;Kim, Koung-Suk;Jung, Hyun-Chul;Chang, Ho-Seob;Kim, Chong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.516-521
    • /
    • 2000
  • Most of studies, using ESPI method, have handled tension, thermal and vibration analysis, and is limited to isotropic materials. However, tension and vibration simultaneously are loaded in real structure. Also, almost study using ESPI method is locally limited to the analysis on the isotropic materials and a few studies on the anisotropic materials have reported. Existing methods, such as the accelerometer method and FEA method, to analyze vibration have some disadvantages. Using the accelerometer method that is generally used to analyze vibration phenomena, it is impossible to analyze vibration on the oscillating body and one can observe no vibration mode shape during experiment. In case of the FEA method, it is difficult to define boundary conditions correctly if the shape of a body tested is complex, and one can just obtain vibration mode shapes on the peak amplitude in each modes. In this study, plane plate of stainless steel(STS304), isotropic material, that is used as structural steel is analyzed about vibration characteristics under tension. Also, in the study of stainless steel, the characteristics of composite material(AS4/PEEK) used as high strength structural material in aircraft is evaluated about vibration under tension, and studies the effect of tension on vibration.

  • PDF

Development of polypropylene-clay nanocomposite with supercritical $CO_2$ assisted twin screw extrusion

  • Hwang, Tae-Yong;Lee, Sang-Myung;Ahn, Young-Joon;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.235-243
    • /
    • 2008
  • The aim of this study is to explore the possibility of incorporating supercritical carbon dioxide ($scCO_2$) into twin screw extrusion process for the production of polypropylene-clay nanocomposite (PPCN). The $CO_2$ is used as a reversible plasticizer which is expected to rapidly transport polymeric chains into the galleries of clay layers in its supercritical condition inside the extruder barrel and to expand the gallery spacings in its sub-critical state upon emerging from die. The structure and properties of the resulting PPCNs are characterized using wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), rheometry, thermogravimetry and mechanical testing. In the processing of the PPCNs with $scCO_2$, optimum $scCO_2$ concentration and screw speed which maximized the degree of intercalation of clay layers were observed. The WAXD result reveals that the PP/PP-g-MA/clay system treated with $scCO_2$ has more exfoliated structure than that without $scCO_2$ treatment, which is supported by TEM result. $scCO_2$ processing enhanced the thermal stability of PPCN hybrids. From the measurement of linear viscoelastic property, a solid-like behavior at low frequency was observed for the PPCNs with high concentration of PP-g-MA. The use of $scCO_2$ generally increased Young's modulus and tensile strength of PPCN hybrids.

Structural evaluation of a foldable cable-strut structure for kinematic roofs

  • Cai, Jianguo;Zhang, Qian;Zhang, Yiqun;Lee, Daniel Sang-hoon;Feng, Jian
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.669-680
    • /
    • 2018
  • The rapidly decreasing natural resources and the global variation of the climate push us to find intelligent and efficient structural systems to provide more people with fewer resources. This paper proposed a kinematic cable-strut system to realize sustainable structures in responding to changing environmental conditions. At first, the concept of the kinematic system based on crystal-cell pyramid (CP) cable-strut unit was given. Then the deployment of the structure was studied experimentally. After that, the static behaviors in the fully deployed state under the symmetric and asymmetric load cases were investigated. Moreover, the effects of thermal loading and the initial prestress distribution were also discussed. Comparative studies between the proposed structure and other deployable cable-strut system under three times of design load cases were carried out. Finally, the robustness of the system was studied by removal of one passive cable at one time.

Characterization of 3D Printed Re-entrant Strips Using Shape Memory Thermoplastic Polyurethane with Various Infill Density (채우기 밀도별 형상 기억 TPU 3D 프린팅 Re-entrant 스트립의 특성 분석)

  • Imjoo Jung;Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.812-824
    • /
    • 2022
  • This study proposes to develop a 3D printed re-entrant(RE) strip by shape memory thermoplastic polyurethane that can be deformed and recovered by thermal stimulation. The most suitable 3D printing infill density condition and temperature condition during shape recovery for mechanical behavior were confirmed. As the poisson's ratio indicated, the higher the recovery temperature, the closer the poisson's ratio to zero and the better the auxetic properties. After recovery testing for five minutes, it appeared that the shape recovery ratio was the highest at 70℃. The temperature range when the shape recovery ratio appeared to be more than 90% was a recovery temperature of more than 50℃ and 60℃ when deformed under a constant load of 100 gf and 300 gf, respectively. This indicated that further deformation occurred after maximum recovery when recovered at a temperature of 80℃, which is above the glass transition temperature range. As for REstrip by infill density, a shape recovery properties of 100% was superior than 50%. Additionally, as the re-entrant structure exhibited a shape recovery ratio of more than 90%, and exhibited auxetic properties. It was confirmed that the infill density condition of 100% and the temperature condition of 70℃ are suitable for REstrips for applying the actuator.

Accelerated Life Prediction of CPB(cold-pad-batch) Padder Roll Rubber to Chemical Degradation (CPB(Cold-Pad-Batch) 염색 패더롤 고무에서 화학적 노화로 인한 가속 수명예측)

  • Lim, Jee Young;Nam, Chang Woo;Lee, Woosung
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.155-161
    • /
    • 2017
  • In CPB(Cold-Pad-Batch) dyeing, the rubber of the padder roll is influenced by the heat, chemical and mechanical influences and thus aging of the padder roll rubber occurs. This study presents an accelerated thermal aging test of the CPB padder roll rubber with strong alkali conditions. Using Arrhenius formula of the various property values for the various aging temperatures($80^{\circ}C$, $90^{\circ}C$, $100^{\circ}C$) of the padder roll, the accelerated life predictions could be calculated. The threshold value of the property was set at different values. The hardness was set at the point where 5% degradation occurs based on the actual use conditions, and the tensile strength was set at the point where 50% degradation occurs based on the general life prediction standards. From the results of the different physical properties at differing temperatures, the Arrhenius plot could be obtained. Through the usage of the Arrhenius Equation, significant duration expectation could be predicted, and the chemical aging behavior of the CPB padder roll could be found at the arbitrary and actual temperatures.