• Title/Summary/Keyword: mechanical and thermal behavior

Search Result 986, Processing Time 0.025 seconds

Reaction Behavior of Ceramic Mat with Lithium Salt for the Electrolyte Separators of Thermal Batteries (전해질 분리판용 세라믹 부직포와 리튬염간의 반응성)

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Shin, Dong-Geun;Lim, Kyoung-Hoon;Jin, Eun-Ju;Kim, Hyoun-Ee;Ha, Sang-Hyeon;Choi, Jong-Hwa
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.587-591
    • /
    • 2009
  • Lithium salt have been used mainly as electrolyte of thermal battery for electricity storage. Recently, The 3phase lithium salt(LiCl-LiF-LiBr) is tried to use as electrolyte of thermal battery for high electric power. It is reported that LiCl-LiF-LiBr salt have high ion mobility due to its high lithium ion concentration. Solid lithium salt is melt to liquid state at above $500{^{\circ}C}$. The lithium ion is easily reacted with support materials. Because the melted lithium ion has small ion size and high ion mobility. For the increasing mechanical strength of electrolyte pellet, the research was started to apply ceramic filter to support of electrolyte. In this study, authors used SiOC web and glass fiber filter as ceramic mat for support of electrolyte and impregnated LiCl-LiF-LiBr salt into ceramic mat at above $500{^{\circ}C}$. The fabricated electrolyte using ceramic mat was washed with distilled water for removing lithium salt on ceramic mat. The washed ceramic mat was observed for lithium ion reaction behavior with XRD, SEM-EDS and so on.

Implementation of a Simulation Tool for Monitoring Runtime Thermal Behavior (실시간 온도 감시를 위한 시뮬레이션 도구의 구현)

  • Choi, Jin-Hang;Lee, Jong-Sung;Kong, Joon-Ho;Chung, Sung-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.145-151
    • /
    • 2009
  • There are excessively hot units of a microprocessor in today's nano-scale process technology, which are called hotspots. Hotspots' heat dissipation is not perfectly conquered by mechanical cooling techniques such as heatsink, heat spreader, and fans; Hence, an architecture-level temperature simulation of microprocessors is evident experiment so that designers can make reliable chips in high temperature environments. However, conventional thermal simulators cannot be used in temperature evaluation of real machine, since they are too slow, or too coarse-grained to estimate overall system models. This paper proposes methodology of monitoring accurate runtime temperature with Hotspot[4], and introduces its implementation. With this tool, it is available to track runtime thermal behavior of a microprocessor at architecture-level. Therefore, Dynamic Thermal Management such as Dynamic Voltage and Frequency Scaling technique can be verified in the real system.

Study of Cooling Characteristics of 18650 Li-ion Cell Module with Different Types of Phase Change Materials (PCMs) (PCM 종류에 따른 18650 리튬-이온 셀 모듈의 냉각 특성 연구)

  • YU, SIWON;KIM, HAN-SANG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.6
    • /
    • pp.622-629
    • /
    • 2020
  • The performance and cost of electric vehicles (EVs) are much influenced by the performance and service life of the Li-ion battery system. In particular, the cell performance and reliability of Li-ion battery packs are highly dependent on their operating temperature. Therefore, a novel battery thermal management is crucial for Li-ion batteries owing to heat dissipation effects on their performance. Among various types of battery thermal management systems (BTMS'), the phase change material (PCM) based BTMS is considered to be a promising cooling system in terms of guaranteeing the performance and reliability of Li-ion batteries. This work is mainly concerned with the basic research on PCM based BTMS. In this paper, a basic experimental study on PCM based battery cooling system was performed. The main purpose of the present study is to present a comparison of two PCM-based cooling systems (n-Eicosane and n-Docosane) of the unit 18650 battery module. To this end, the simplified PCM-based Li-ion battery module with two 18650 batteries was designed and fabricated. The thermal behavior (such as temperature rise of the battery pack) with various discharge rates (c-rate) was mainly investigated and compared for two types of battery systems employing PCM-based cooling. It is considered that the results obtained from this study provide good fundamental data on screening the appropriate PCMs for future research on PCM based BTMS for EV applications.

Synthesis and Properties of Energetic Thermoplastic Polyurethane included Glycidyl Azide Polymer (Glycidyl Azide Polymer를 포함하는 에너지화 열가소성 폴리우레탄의 합성 및 성질)

  • Kim, Hyoung-Sug;You, Jong-Sung;Kweon, Jung-Ok;Noh, Si-Tae;Kwon, Soon-Kil;Lee, Jung-Hwan;Yu, Jae-Chul;Choi, Keun-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.660-666
    • /
    • 2009
  • Thermoplastic polyurethane elastomer(PU-TPE) and energetic thermoplastic polyurethane Elastomer(E-PU-TPE) were prepared from Hexamethylene diisocyanate(HDI), 1,4-BD/AA ester polyol and glycidyl azide polymer(GAP-2400) as an energetic material by the addition polymerization. The PU-TPE and E-PU-TPE were characterized by FT-IR and GPC. Viscometer, DSC and UTM were used to investigate the viscose behavior with a various solvent, thermal properties and mechanical properties of PU-TPE and E-PU-TPE, which are of potential interest for the development of high performance binder of energetic solid propellants. It was found that $M_w$ of PU-TPE and E-PU-TPEs are over 100,000 and decreased with increase of GAP-2400 contents. $T_m$ and ${\Delta}H$ as thermal properties decreased and also tensile strength and elongation at break as mechanical properties decreased with increase of GAP-2400 contents.

A novel excisional wound pain model for evaluation of analgesics in rats

  • Parra, Sergio;Thanawala, Vaidehi J.;Rege, Ajay;Giles, Heather
    • The Korean Journal of Pain
    • /
    • v.34 no.2
    • /
    • pp.165-175
    • /
    • 2021
  • Background: Management of pain from open wounds is a growing unmet healthcare need. However, the models available to study pain from wounds or to develop analgesics for the patients suffering from them have primarily relied on incisional models. Here, we present the first characterized and validated model of open wound pain. Methods: Unilateral full-skin excisional punch biopsy wounds on rat hind paws were evaluated for evoked pain using withdrawal responses to mechanical and thermal stimulation, and spontaneous pain was measured using hind paw weight distribution and guarding behavior. Evaluations were done before wounding (baseline) and 2-96 hours post-wounding. The model was validated by testing the effects of buprenorphine and carprofen. Results: Pain responses to all tests increased within 2 hours post-wounding and were sustained for at least 4 days. Buprenorphine caused a reversal of all four pain responses at 1 and 4 hours post-treatment compared to 0.9% saline (P < 0.001). Carprofen decreased the pain response to thermal stimulation at 1 (P ≤ 0.049) and 4 hours (P < 0.011) post-treatment compared to 0.9% saline, but not to mechanical stimulation. Conclusions: This is the first well-characterized and validated model of pain from open wounds and will allow study of the pathophysiology of pain in open wounds and the development of wound-specific analgesics.

Study on the Single Bubble Growth During Nucleate Boiling at Saturated Pool (포화상태 풀비등시 단일기포의 성장에 관한 연구)

  • Kim Jeongbae;Lee Han Choon;Oh Byung Do;Kim Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.169-179
    • /
    • 2005
  • Nucleate boiling experiments on heating surface of constant wall temperature were performed using R113 for almost saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition of heating surface and to measure the heat flow rate with high temporal and spatial resolutions. Bubble images during the bubble growth were taken as 5000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble growth behavior was analyzed using the new dimensionless parameters for each growth regions to permit comparisons with previous experimental results at the same scale. We found that the new dimensionless parameters can describe the whole growth region as initial and later (thermal) respectively. The comparisons showed good agreement in the initial and thermal growth regions. In the initial growth region including surface tension controlled, transition and inertia controlled regions as divided by Robinson and Judd, the bubble growth rate showed that the bubble radius was proportional to $t^{2/3}$ regardless of working fluids and heating conditions. And in the thermal growth region as also called asymptotic region, the bubble showed a growth rate that was proportional to $t^{1/5}$, also. Those growth rates were slower than the growth rates proposed in previous analytical analyses. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the heat flow rate measured at the wall. Heat, which is different from the instantaneous heat supplied through the heating wall, can be estimated as being transferred through the interface between bubble and liquid even with saturated pool condition. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).

Mechanical and Thermal Behavior of Polyamide-6/Clay Nanocomposite Using Continuum-based Micromechanical Modeling

  • Weon, Jong-Il
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.797-806
    • /
    • 2009
  • The mechanical and thermal behaviors of polyamide-6/clay nanocomposites were studied using the continuum-based, micromechanical models such as Mori-Tanaka, Halpin-Tsai and shear lag. Mechanic-based model prediction provides a better understanding regarding the dependence of the nanocomposites' reinforcement efficiency on conventional filler structural parameters such as filler aspect ratio ($\alpha$), filler orientation (S), filler weight fraction (${\Psi}_f$), and filler/matrix stiffness ratio ($E_f/E_m$). For an intercalated and exfoliated nanocomposite, an effective, filler-based, micromechanical model that includes effective filler structural parameters, the number of platelets per stack (n) and the silicate inter-layer spacing ($d_{001}$), is proposed to describe the mesoscopic intercalated filler and the nanoscopic exfoliated filler. The proposed model nicely captures the experimental modulus behaviors for both intercalated and exfoliated nanocomposites. In addition, the model prediction of the heat distortion temperature is examined for nanocomposites with different filler aspect ratio. The predicted heat distortion temperature appears to be reasonable compared to the heat distortion temperature obtained by experimental tests. Based on both the experimental results and model prediction, the reinforcement efficiency and heat resistance of the polyamide-6/clay nanocomposites definitely depend on both conventional (${\alpha},\;S,\;{\Psi}_f,\;E_f/E_m$) and effective (n, $d_{001}$) filler structural parameters.

Mechanical Properties Analysis of Epoxy and Polyurethane Adhesive for Accurate Structural Analysis of LNG Cargo Hold (LNG 화물창 정밀 구조해석을 위한 에폭시와 폴리우레탄 접착제 기계적 물성치 분석)

  • Jeong, Yong-Cheol;Jeong, Yeon-Jae;Kim, Jeong-Dae;Park, Seong-Bo;Kim, Yong-Tai;Oh, Hoon-Gyu;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.66-72
    • /
    • 2021
  • As the demand for natural gas that satisfies environmental regulations increases, the quantities of natural gas cargo that carrier can load is also increasing. Natural gas is transported in a liquefied state at -163 ℃ to increase loading efficiency. Among several LNG CCS types, MARK-III types are generally adopted in terms of loading efficiency. The secondary barrier adhesives of the MARK-III, nevertheless, is subjected to tensile stress due to thermal contraction and tension in the environment. In terms of these reasons, local analysis of the adhesive to evaluate the stress state must be carried out. According to previous studies, local analysis is unavailable since material properties for secondary barrier adhesives have not been reported. Thus, in this study, the cryogenic tensile test and coefficient of thermal expansion of epoxy and polyurethane (PU15, PU45), which are most widely used at cryogenic temperatures, were experimentally analyzed. At cryogenic temperature, the mechanical behavior of the polyurethane adhesive was better than epoxy of the adhesive. the joint of FSB and epoxy adhesive of the secondary barrier has the maximum coefficient of thermal expansion difference at 25 ℃ and minimum at -150 ℃, respectively.

Spark Plasma Sintering Behavior and Heat Dissipation Characteristics of the Aluminum Matrix Composite Materials with the Contents of Graphite (흑연 함량에 따른 알루미늄 기지 복합재료의 방전플라즈마소결 거동 및 방열 특성)

  • Kwon, Hansang;Park, Jehong;Joo, Sungwook;Hong, Sanghwui;Mun, Jihoon
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.195-201
    • /
    • 2016
  • Composite materials consisting of pure aluminum matrix reinforced with different amounts of graphite particles are successfully fabricated by mechanical ball milling and spark plasma sintering (SPS) processes. The shrinkage rates of the composite powders vary with the amount of graphite particles and the lowest shrinkage value is observed for the composite with the highest amount of graphite particles. The current slopes of time increase with increase in the amount of graphite particles whereas the current slopes of temperature show the opposite trend. The highest thermal conductivity is achieved for the composite with the least amount of graphite particles. Therefore, the thermal properties of the composite materials can be controlled by controlling the amount of the graphite particles during the SPS process.

CRITICAL HEAT FLUX FOR DOWNWARD-FACING BOILING ON A COATED HEMISPHERICAL VESSEL SURROUNDED BY AN INSULATION STRUCTURE

  • Yang, J.;Cheung, F.B.;Rempe, J.L.;Suh, K.Y.;Kim, S.B.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.139-146
    • /
    • 2006
  • An experimental study was performed to evaluate the effects of surface coating and an enhanced insulation structure on the downward facing boiling process and the critical heat flux on the outer surface of a hemispherical vessel. Steady-state boiling tests were conducted in the Subscale Boundary Layer Boiling (SBLB) facility using an enhanced vessel/insulation design for the cases with and without vessel coatings. Based on the boiling data, CHF correlations were obtained for both plain and coated vessels. It was found that the nucleate boiling rates and the local CHF limits for the case with micro-porous layer coating were consistently higher than those values for a plain vessel at the same angular location. The enhancement in the local CHF limits and nucleate boiling rates was mainly due to the micro-porous layer coating that increased the local liquid supply rate toward the vaporization sites on the vessel surface. For the case with thermal insulation, the local CHF limit tended to increase from the bottom center at first, then decrease toward the minimum gap location, and finally increase toward the equator. This non-monotonic behavior, which differed significantly from the case without thermal insulation, was evidently due to the local variation of the two-phase motions in the annular channel between the test vessel and the insulation structure.