• Title/Summary/Keyword: mechanical and thermal behavior

Search Result 986, Processing Time 0.034 seconds

Characterization of Dynamic Deformation Behavior of Al 7075-T6 at High Temperature by Using SHPB Technique (SHPB 기법을 사용한 고온에서의 Al 7075-T6 의 동적 변형 거동)

  • Lee, Ouk-Sub;Park, Jin-Su;Choi, Hye-Bin;Kim, Hong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.981-987
    • /
    • 2010
  • The split Hopkinson pressure bar (SHPB) technique is extensively used to characterize material deformation behavior under high strain rate condition. In this study, the dynamic deformation behavior of aluminum 7075-T6 under a high strain rate and at a high temperature is investigated by using a modified SHPB set-up with the pulse shaper technique. The parameters used in the Johnson-Cook constitutive equation are determined by using the SHPB experimental results including the data on the effects of strain rate, temperature, strain hardening, and thermal softening of the material.

Thermal post-buckling measurement of the advanced nanocomposites reinforced concrete systems via both mathematical modeling and machine learning algorithm

  • Minggui Zhou;Gongxing Yan;Danping Hu;Haitham A. Mahmoud
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.623-638
    • /
    • 2024
  • This study investigates the thermal post-buckling behavior of concrete eccentric annular sector plates reinforced with graphene oxide powders (GOPs). Employing the minimum total potential energy principle, the plates' stability and response under thermal loads are analyzed. The Haber-Schaim foundation model is utilized to account for the support conditions, while the transform differential quadrature method (TDQM) is applied to solve the governing differential equations efficiently. The integration of GOPs significantly enhances the mechanical properties and stability of the plates, making them suitable for advanced engineering applications. Numerical results demonstrate the critical thermal loads and post-buckling paths, providing valuable insights into the design and optimization of such reinforced structures. This study presents a machine learning algorithm designed to predict complex engineering phenomena using datasets derived from presented mathematical modeling. By leveraging advanced data analytics and machine learning techniques, the algorithm effectively captures and learns intricate patterns from the mathematical models, providing accurate and efficient predictions. The methodology involves generating comprehensive datasets from mathematical simulations, which are then used to train the machine learning model. The trained model is capable of predicting various engineering outcomes, such as stress, strain, and thermal responses, with high precision. This approach significantly reduces the computational time and resources required for traditional simulations, enabling rapid and reliable analysis. This comprehensive approach offers a robust framework for predicting the thermal post-buckling behavior of reinforced concrete plates, contributing to the development of resilient and efficient structural components in civil engineering.

Experimental Study to Evaluate Thermal and Mechanical Behaviors of Frozen Soils according to Organic Contents (유기물 함유량에 따른 동토 시료의 열적·역학적 거동 평가를 위한 실험적 연구)

  • Sangyeong Park;Hyeontae Park;Hangseok Choi;YoungSeok Kim;Sewon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.53-62
    • /
    • 2024
  • Recently, development of non-traditional energy such as oil sands has been actively conducted in the cold region such as Canada. Frozen soil has different thermal and mechanical characteristics from general soil due to its high organic contents. This study evaluated the impact of organic matter content on the thermal and mechanical behavior of frozen soil samples collected from Alberta, Canada, and Gangwon Province, South Korea. As the organic content increases, the maximum dry unit weight decreases and the optimum moisture content increases in compaction tests. In uniaxial compression tests under frozen conditions, the strength of the frozen specimens increased as the temperature decreased. The strength of Canada soil sample increased with higher organic matter content at low temperatures. However, the strength of frozen soil was not significantly affected by organic matter content due to the complex behavior and unfrozen water content. Thermal conductivity tests showed higher thermal conductivity in frozen conditions compared to unfrozen conditions, due to the higher thermal conductivity of ice compared to water. These findings provide essential data for geotechnical design and construction in large-scale projects such as oil sands development in cold regions. Further research is needed to explore the impact of organic matter content on different types of frozen soils.

Interfacial Shear Strength and Thermal Properties of Electron Beam-Treated Henequen Fibers Reinforced Unsaturated Polyester Composites

  • Pang Yansong;Cho Donghwan;Han Seong Ok;Park Won Ho
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.453-459
    • /
    • 2005
  • Natural fiber henequen/unsaturated polyester (UPE) composites were fabricated by means of a compression molding technique using chopped henequen fibers treated at various electron beam (EB) dosages. The interfacial shear strength (IFSS), dynamic mechanical properties, and thermal expansion behavior were investigated through a single fiber microbonding test, fractographic observation, dynamic mechanical analysis, and thermomechanical analysis, respectively. The results indicated that the interfacial and dynamic mechanical properties significantly depended on the level of the EB treatment irradiated onto the henequen fiber surfaces. The effect of EB treatment on the IFSS, storage modulus and fracture surface of the henequen/UPE composites agreed with each other. The results of this study also suggested that the modification of henequen fiber surfaces at 10 kGy EB is the most effective for improving the interfacial properties of the henequen/UPE composites.

Study for Characteristic of Frictional Heat Transfer in Rotating Brake System (회전을 고려한 브레이크 디스크의 마찰열전달 연구)

  • Nam, Jiwoo;Ryou, Hong Sun;Cho, Seong Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.817-822
    • /
    • 2017
  • The braking system is one of the most important components in vehicles and machines. It must exert a reliable braking force when they are brought to a halt. Generally, frictional heat is generated by converting kinetic energy into heat energy through friction. As the kinetic energy is converted into heat energy, high temperature heat is generated which affects the mechanical behavior of the braking system. Frictional heat affects the thermal expansion and friction coefficient of the brake system. If the temperature is not controlled, the brake performance will be decreased. Therefore, it is important to predict and control the heat generation of the brake. Various numerical analysis studies have been carried out to predict the frictional heat, but they assumed the existence of boundary conditions in the numerical analysis to simulate the frictional heat, because the simulation of frictional heat is difficult and time consuming. The results were based on the assumption that the frictional heat is different from the actual temperature distribution in a rotating brake system. Therefore, the reliability of the cooling effect or thermal stress using the results of these studies is insufficient. In order to overcome these limitations and establish a simulation procedure to predict the frictional heat, this study directly simulates the frictional heat generation by using a thermal-structure coupling element. In this study, we analyzed the thermo-mechanical behavior of a brake model, in order to investigate the thermal characteristics of brake systems by using the Finite Element method (FEM). This study suggests the necessity to directly simulate the frictional heating and it is hoped that it can provide the necessary information for simulations.

Cure and Mechanical Behaviors of Cycloaliphatic/DGEBA Epoxy Blend System using Electron-Beam Technique (전자선 조사에 의한 고리지방족/DGEBA 에폭시 블렌드 시스템의 경화 및 기계적 특성)

  • 이재락;허건영;박수진
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.210-216
    • /
    • 2003
  • 4-Vinyl-1-cyclohexene diepoxide (VCE)/diglycidyl ether of bisphenol-A (DGEBA) epoxy blends with benzylquinoxalinium hexafluoroanti-monate were cured using an electron-beam technique. The effect of DGEBA content to VCE on cure behavior, thermal stabilities, and mechanical properties was investigated. The composition of VCE/DGEBA blend system vaned within 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 wt%. The cure behavior and thermal stability of the cured specimens was monited by near-infrared spectroscopy and thermogravimetric analysis, respectively. Also, the critical stress intensity factor ($_{4}$) test of the cured specimens was performed to study the mechanical interfacial properties. As a result, the decreases of short side-chain structure and chain scission were observed in NIR measurements as the DGEBA content increases, resulting in varying the hydroxyl and carbonyl groups. And, the initial decomposition temperature (IDT), temperature of maximum weight loss (T$\_$max/), and decomposition activation energy (E$\_$d/) as thermal stability factors were increased with increasing the DGEBA content. These results could be explained by mean of decreasing viscosity, stable aromatic ring structure, and grafted interpenetrating polymer network with increasing of DGEBA content. Also, the maximum $_{4}$ value showed at mixing ratio of 40:60 wt% in this blend system. in this blend system.

Enhanced First-Order Shear Deformation Theory for Thermo-Mechanical-Viscoelastic Analysis of Laminated Composite Structures (복합재료 적층 구조물에 대한 열-기계-점탄성 연성 거동 예측을 위한 개선된 일차전단변형이론)

  • Kim, Jun-Sik;Han, Jang-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • In this study, an enhanced first-order shear deformation theory is proposed to efficiently and accurately predict the thermo-mechanical-viscoelastic coupled behavior of laminated composite structures. To this end, transverse shearstress and displacement fields are independently assumed, and the strain-energy relationship between these fields issystematically established using the mixed variational theorem (MVT). In MVT, the transverse shear stress fields are obtained from the third-order zigzag model, whereas the displacement fields of the conventional first-order model are considered to amplify the benefits of numerical efficiency. Additionally, a transverse displacement field with a smooth parabolic distribution is introduced to accurately predict the thermal behavior of composite structures. Furthermore, the concept of Laplace transformation is newly employed to simplify the viscoelastic problem, similar to the linear-elastic problem. To demonstrate the performance of the proposed theory, the numerical results obtained herein were compared with those available in the literature.

Study on Inverse Approach to Validation of Viscoplastic Model of Sn37Pb Solder and Identification of Model Parameters (Sn37Pb 솔더의 점소성 모델 검증 및 파라메터 추정을 위한 역접근법에 관한 연구)

  • Gang, Jin-Hyuk;Lee, Bong-Hee;Choi, Joo-Ho;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1377-1384
    • /
    • 2010
  • The objective of this study is to determine the best material model that represents the deformation behavior of the Sn37Pb solder alloy accurately. First, a specimen is fabricated and subjected to a thermal cycle with temperatures ranging from the room temperature to $125^{\circ}C$. An experiment is conducted to examine deformation by Moire interferometry. Three different constitutive equation models are used in the finite element analysis (FEA) of the thermal cycle. In order to minimize the difference between the FEA results and the experimental results, the material parameters of the solder alloy are considered to be unknown and are determined by conducting optimization. As a result of the study, the Anand model is found to represent the deformation behavior of the solder most accurately.

High Temperature Deformation Behavior of Fe-base High Strength Alloys (고강도 Fe계 합금의 고온 변형 특성)

  • Kwon, Woon-Hyun;Choi, Il-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.938-946
    • /
    • 2008
  • Fe-base amorphous alloy and two crystalline phases composite were fabricated. The effect of temperature and strain rate on mechanical properties was evaluated utilizing compression test. Mixture of non-crystalline and crystalline phases were found using X-ray diffraction (XRD) and differential thermal analysis (DTA) tests. Based on glass transition temperature and crystallization temperature. compression tests were performed in the temperature ranging from $560^{\circ}C$ to $700^{\circ}C$ with $20^{\circ}C$ interval. Relationship between microstructure, including fracture surface morphology, and mechanical behavior was studied. The peak stress of Fe-base amorphous alloy was over 2GPa and expected to have a good wear resistance, but it is expected hard to deform because of low ductility. The peak stress and elongation of two crystalline phases composite was over 1GPa and about 20%, therefore it is possible to deform high strength wear resistant materials such as engine valve.

Thermal Fatigue Degradation Behavior of Ni-Ti Shape Memory Alloy (Ti-Ni 형상기억합금의 열피로열화 거동)

  • 박영철;조용배;오세욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2913-2921
    • /
    • 1994
  • In SMA(shape memory alloy), the degradation by fatigue is one of the most important problems to be overcome, when SMA is used for robot-actuator material. The actuator is operated repeatitively for long time and its repeating operation develops the fatigue degradation of SMA. The fatigue degradation changes the transformation temperature and deformation behavior and results in inaccurate operation control of robot. Accordingly, the changing behavior of transformation temperature and deformation which results from repeating operation is to be investigated in advance and the scheme to resolve those problems have to be made for the design of actuator. In this study, the fatigue tests were carried out on SMA specimens prepared to have different condition of aging time and pre-strain with the direct-current heating-cooling method, which was a general method of operation in robot actuators. The behavior of transformation temperature and deformation were examined and analyzed in each specimen and the study was performed to establish the optimistic manufacturing condition of SMA against the fatigue degradation.