• Title/Summary/Keyword: mechanical and thermal behavior

Search Result 986, Processing Time 0.036 seconds

Thermoelastic Behaviors of Fabric Membrane Structures

  • Roh, Jin-Ho;Lee, Han-Geol;Lee, In
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.319-332
    • /
    • 2008
  • The thermoelastic behaviors of an inflatable fabric membrane structure for use in a stratospheric airship envelope are experimentally and numerically investigated. Mechanical tensile properties of the membrane material at room, high, and low temperatures are measured using an $Instron^{(R)}$ universal testing machine and an $Instron^{(R)}$ thermal chamber. To characterize the nonlinear behavior of the inflated membrane structure due to wrinkling, the bending behavior of an inflated cylindrical boom made of a fabric membrane is observed at various pressure levels. Moreover, the envelope of a stratospheric airship is numerically modeled based on the thermoelastic properties of the fabric membrane obtained from experimental data, and the wrinkled deformed shape induced by a thermal load is analyzed.

Spray Coating Technology (스프레이 코팅 기술)

  • Lee, Chang-Hee
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.193-199
    • /
    • 2008
  • Spray coating is a versatile surface modification technology in which coating is built-up based on the successive deposition of micron-scaled particles. Depending on the coating materials, the coatings can meet the required mechanical properties, corrosion resistance, and other properties of base materials. Spraying processes are mainly classified into thermal and kinetic spraying according to their bonding mechanism and deposition characteristics. Specifically, thermal spraying process can be further classified into many categories based on the design and mechanism of the process, such as frame spraying, arc spraying, atmospheric plasma spraying (APS), and high velocity oxygen-fuel (HVOF) spraying, etc. Kinetic spraying or cold gas dynamic spraying is a newly emerging coating technique which is low-temperature and high-pressure coating process. In this paper, overall view of thermal and kinetic spray coating technologies is discussed in terms of fundamentals and industrial applications. The technological characteristics and bonding mechanism of each process are introduced. Deposition behavior and properties of technologically remarkable materials are reviewed. Furthermore, industrial applications of spray coating technology and its potentials are prospected.

  • PDF

A Study on the Characteristic of Heat Transfer of PCM(Phase Change Material) at the Simultaneous Charging and Discharging Condition (동시 축·방열 조건에서 PCM의 열전달 특성에 관한 연구)

  • Lee, Donggyu;Park, Sechang;Chung, Dong-yeol;Kang, Cheadong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.305-310
    • /
    • 2016
  • A thermal storage systems was designed to correspond to the temporal or quantitative variation in the thermal energy demand, and most of its heat is stored using the latent and sensible heat of the heat storage material. The heat storage method using latent heat has a very complex phenomenon for heat transfer and thermal behavior because it is accompanied by a phase change in the course of heating/cooling of the heat storage material. Therefore, many studies have been conducted to produce an experimentally accessible as well as numerical approach to confirm the heat transfer and thermal behavior of phase change materials. The purpose of this study was to investigate the problems encountered during the actual heat transfer from an internal storage tank through simulation of the process of storing and utilizing thermal energy from the thermal storage tank containing charged PCM. This study used analysis methods to investigate the heat transfer characteristics of the PCM with simultaneous heating/cooling conditions in the rectangular space simulating the thermal storage tank. A numerical analysis was carried out in a state considering natural convection using the ANSYS FLUENT(R) program. The result indicates that the slope of the liquid-solid interface in the analysis field changed according to the temperature difference between the heating surface and cooling surface.

A Study on Thermal Behavior Characteristics of Multi-flight Screw in Injection Molding Machine by FEM (유한요소법을 이용한 다중날 사출기 스크류의 열거동 특성 연구)

  • Cho, Seung-Hyun;Lee, Young-Suk;Kim, Sung-Won;Kim, Chung-Kyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.285-290
    • /
    • 2002
  • Screw in injection molding machine is affected by heat flux, pressure on inside barrel, geometry of screw including flight number, pitch and flight angle. Volumetric efficiency increases as the flight number increases, but it didn't show steady tendency according to helix angle of flight. Heat flux from heating pad and injection pressure play a very important role on the thermal behavior characteristics. The increased number of multi-flight is merits and demerits for a screw efficiency. So, we have to optimize flight number of the screw considering temperature, displacement, distortion and stress of the screw.

  • PDF

Comparative study on the bending of exponential and sigmoidal sandwich beams under thermal conditions

  • Aman, Garg;Mohamed-Ouejdi, Belarbi;Li, Li;Hanuman D., Chalak;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.217-231
    • /
    • 2023
  • The bending analysis of sandwich functionally graded (FG) beams under temperature circumstances is performed in this article utilizing Navier's solution-based parabolic shear deformation theory. For the first time, a comparative study has been carried out between the exponential and sigmoidal sandwich FGM beams under thermal conditions. During this investigation, temperature-dependent material characteristics are postulated. Both symmetric and unsymmetric sandwich examples have been studied. The effect of gradation law, gradation coefficient, and thickness scheme on beam behavior has been thoroughly investigated. Three possible temperature combinations at the top and bottom surfaces of the beam are also investigated. Beams with a higher proportion of ceramic to metal are shown to be more resistant to thermal stresses than beams with a higher proportion of metal.

Thermal Aging Behavior of H-NBR/NBR Blend (H-NBR/NBR 블렌드의 열노화거동)

  • Choi, Won-Seok;Kim, Gun-Wan;Do, Je-Sung;Yoo, Myung-Ho;Ryu, Sung-Hun
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.132-137
    • /
    • 2011
  • In the present investigation, thermal aging behavior of H-NBR/NBR blend with various H-NBR content was investigated. Mixture of dicumyl peroxide and sulfur were used as a curing agent. The influence of the thermal aging of the H-NBR/NBR blends on the solid state properties such as tensile strength, elongation at break, hardness and abrasion resistance was investigated. Tensile strength was increased with increasing H-NBR content, while abrasion resistance was decreased. Both elongation at break and hardness were not affected by the addition of H-NBR. The properties such as hardness, tensile strength and elongation at break of the aged samples were lower than unaged samples. However, the rate of deterioration of those properties was decreased by increasing the H-NBR content, which indicated that improved thermal aging behavior was obtained by the addition of H-NBR. Abrasion loss was increased with increasing aging time, but it became less by the addition of H-NBR addition.

Flow Softening Behavior during the High Temperature Deformation of AZ31 Mg alloy (AZ31 Mg 합금의 고온 변형 시의 동적 연화 현상)

  • Lee, Byoung-Ho;Reddy, N.S.;Yeom, Jong-Teak;Lee, Chong-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.70-73
    • /
    • 2006
  • In the present study, the flow-softening behavior occurring during high temperature deformation of AZ31 Mg alloy was investigated. Flow softening of AZ31 Mg alloy was attributed to (1) thermal softening by deformation heating and (2) microstructural softening by dynamic recrystallization. Artificial neural networks method was used to derive the accurate amounts of thermal softening by deformation heating. A series of mechanical tests (High temperature compression and load relaxation tests) was conducted at various temperatures ($250^{\circ}C{\sim}500^{\circ}C$) and strain rates ($10^{-4}/s{\sim}100/s$) to formulate the recrystallization kinetics and grain size relation. The effect of DRX kinetics on microstructure evolution (fraction of recrystallization) was evaluated by the unified SRX/DRX (static recrystallization/dynamic recrystallization) approaches

  • PDF

A Numerical Study on the Contact Behavior Analysis with Thermal and New Design of Bonded Door Seal (접합식 도어시일의 온도를 고려한 접촉거동에 관한 수치적 연구)

  • Kim Chung Kyun;Kim Han Goo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.335-340
    • /
    • 2003
  • This paper presents contact behavior of a perfluoroelastomer bonded door seal by a non-linear finite element method using the mechanical and thermal analysis. The shape effects are investigated for sealing performance of bonded door seal. Also maximum stress, temperature distribution and contact force are investigated. A bonded door seal was modeled three shape. The highest contact force occurs at model III(sunflower shape). The maximum stress of model III is lower than that of the others. The calculated FEM results show that the model III has excellent performance compared with other seal models.

  • PDF

Combined resonance of axially moving truncated conical shells in hygro-thermal environment

  • Zhong-Shi Ma;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.291-300
    • /
    • 2024
  • This paper predicts the combined resonance behavior of the truncated conical shells (TCSs) under transverse and parametric coupled excitation. The motion governing equation is formulated in the framework of high-order shear deformation theory, von Kármán theory and Hamilton principle. The displacements and boundary conditions are characterized by a set of displacement shape functions with double Fourier series. Subsequently, the method of varying amplitude (MVA) is utilized to derive the approximate analytical solution of system response of TCSs. A comparative analysis is conducted to verify the accuracy of the current computational method. Additionally, the interaction mechanism of combined resonance, parametric resonance and primary resonance is examined. And the effect of damping coefficient, the external excitation, initial phase, axial motion speed, temperature variation, humidity variation, material properties and semi-vortex angle on the vibration mechanism are analyzed.

Study on Corner Crack Protection for Various Thermal Environment in Flat Panel Displays (온도 환경 변화에 따른 평판형 TV 모서리 파손 방지를 위한 구조 설계 연구)

  • Kim, Min-Keun;Kim, Sung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.678-682
    • /
    • 2007
  • It is conducted that study on corner crack protection for various thermal environment in a flat panel display. Most of the consumer electronics consist of a plastic and a metal structure. And different properties of materials could cause failure of structural reliability due to the various operating temperatures. Especially for front bezel with thin and slender structure, the effect of temperature is significant, and the design for crack protection is crucial for thermal reliability of displays. In this study, it is prescribed the behavior of the front bezel in flat panel display for various operation temperatures and proposed design parameters to ensure the structural reliability of displays.

  • PDF