• Title/Summary/Keyword: mechanical and thermal behavior

Search Result 986, Processing Time 0.039 seconds

Thermo-elastic analysis of rotating functionally graded micro-discs incorporating surface and nonlocal effects

  • Ebrahimi, Farzad;Heidar, Ebrahim
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.295-318
    • /
    • 2018
  • This research studies thermo-elastic behavior of rotating micro discs that are employed in various micro devices such as micro gas turbines. It is assumed that material is functionally graded with a variable profile thickness, density, shear modulus and thermal expansion in terms of radius of micro disc and as a power law function. Boundary condition is considered fixed-free with uniform thermal loading and elastic field is symmetric. Using incompressible material's constitutive equation, we extract governing differential equation of four orders; to solution this equation, we utilize general differential quadrature (GDQ) method and the results are schematically pictured. The obtained result in a particular case is compared with another work and coincidence of results is shown. We will find out that surface effect tends to split micro disc's area to compressive and tensile while nonlocal parameter tries to converge different behaviors with each other; this convergence feature make FGIMs capable to resist in high temperature and so in terms of thermo-elastic behavior we can suggest, using FGIMs in micro devices such as micro turbines (under glass transition temperature).

Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application (액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory

  • Beldjelili, Youcef;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.755-786
    • /
    • 2016
  • The hygro-thermo-mechanical bending behavior of sigmoid functionally graded material (S-FGM) plate resting on variable two-parameter elastic foundations is discussed using a four-variable refined plate theory. The material characteristics are distributed within the thickness direction according to the two power law variation in terms of volume fractions of the constituents of the material. By employing a four variable refined plate model, both a trigonometric distribution of the transverse shear strains within the thickness and the zero traction boundary conditions on the top and bottom surfaces of the plate are respected without utilizing shear correction factors. The number of independent variables of the current formulation is four, as against five in other shear deformation models. The governing equations are deduced based on the four-variable refined plate theory incorporating the external load and hygro-thermal influences. The results of this work are compared with those of other shear deformation models. Various numerical examples introducing the influence of power-law index, plate aspect ratio, temperature difference, elastic foundation parameters, and side-to-thickness ratio on the static behavior of S-FGM plates are investigated.

Thermal Behavior and Physical Properties of Low Density Polyethylene/Metallocene Linear Low Density Polyethylene Blends (저밀도 폴리에틸렌/메탈로센 선형 저밀도 폴리에틸렌 블렌드의 열적 거동 및 물성)

  • Kim, Jang-Yup;Hyun, Uk;Lee, Dong-Ho;Noh, Seok-Kyun;Lee, Sang-Won;Huh, Wan-Soo
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.502-507
    • /
    • 2003
  • The thermal and physical properties of low density polyethylene melt-blended with Metallocene linear low density polyethylenes were investigated. Since the Metallocene polyethylenes have similar MW and MWD except m-LLDPE4, it can be said that the thermal behavior and mechanical properties of the blends depend upon the l-octene comonomer content. The melting behavior of LDPE/m-LLDPE1 blends shows two melting peaks with LDPE contents higher than 50%, while the other blends show only one melting peak. It was observed that the blends show higher crystallization temperature and higher crystallinity with lower comonomer content. Initial modulus of a blend exhibited the behavior proportional to the crystallinity and the elongation at break of the blends was increased with increasing the m-LLDPE composition. Melt indices of the blends decreased with increasing the comonomer content of Metallocene LLDPE. Melt Index values of the blends show negative deviation.

SAFETY ANALYSIS OF INCREASE IN HEAT REMOVAL FROM REACTOR COOLANT SYSTEM WITH INADVERTENT OPERATION OF PASSIVE RESIDUAL HEAT REMOVAL AT NO-LOAD CONDITIONS

  • SHAO, GE;CAO, XUEWU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.434-442
    • /
    • 2015
  • The advanced passive pressurized water reactor (PWR) is being constructed in China and the passive residual heat removal (PRHR) system was designed to remove the decay heat. During accident scenarios with increase of heat removal from the primary coolant system, the actuation of the PRHR will enhance the cooldown of the primary coolant system. There is a risk of power excursion during the cooldown of the primary coolant system. Therefore, it is necessary to analyze the thermal hydraulic behavior of the reactor coolant system (RCS) at this condition. The advanced passive PWR model, including major components in the RCS, is built by SCDAP/RELAP5 code. The thermal hydraulic behavior of the core is studied for two typical accident sequences with PRHR actuation to investigate the core cooling capability with conservative assumptions, a main steam line break (MSLB) event and inadvertent opening of a steam generator (SG) safety valve event. The results show that the core is ultimately shut down by the boric acid solution delivered by Core Makeup Tank (CMT) injections. The effects of CMT boric acid concentration and the activation delay time on accident consequences are analyzed for MSLB, which shows that there is no consequential damage to the fuel or reactor coolant system in the selected conditions.

Structural Design of a Mover considering the Thermal Analysis of a Stator Module (스테이터 모듈의 열해석을 고려한 이동체의 구조설계)

  • Lee, Jeong-Myeong;Han, Dong-Seop;Lee, Seong-Uk;Han, Geun-Jo;Lee, Gwon-Sun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.367-372
    • /
    • 2006
  • When we design a linear motor, the thermal behavior investigation is one of great important considerations with respect to uniform thrust force and thermal deformation of a linear motor. In this study, we conduct the research for the structural design of the linear motor for LMTT(Linear Motor-based Transfer Technology) which is the next generation of container horizontal transfer system in order to automate a container terminal. After the dimensions of main parts for a linear motor were set up, we carried out the thermal-structural analysis of the linear motor considering the thermal analysis of the stator module.

  • PDF

Optimization of intelligent prosthetic hands using artificial neural networks and nanoscale technologies for enhanced performance

  • Jialing Li;Gongxing Yan;Zefang Wang;Belgacem Bouallegue;Tamim Alkhalifah
    • Advances in nano research
    • /
    • v.17 no.4
    • /
    • pp.369-383
    • /
    • 2024
  • Annular nano-electromechanical systems (NEMS) in intelligent prosthetic hands enhance precision by serving as highly sensitive sensors for detecting pressure, vibrations, and deformations. This improves feedback and control, enabling users to modulate grip strength and tactile interaction with objects more effectively, enhancing prosthetic functionality. This research focuses on the electro-thermal buckling behavior of multi-directional poroelastic annular NEMS used as temperature sensors in airplanes. In the present study, thermal buckling performance of nano-scale annular functionally graded plate structures integrated with piezoelectric layers under electrical and extreme thermal loadings is investigated. In this regard, piezoelectric layers are placed on a disk made of metal matrix composite with graded properties in three radials, thickness and circumferential directions. The grading properties obey the power-law distribution. The whole structure is embedded in thermal environment. To model the mechanical behavior of the structure, a novel four-variable refined quasi-3D sinusoidal shear deformation theory (RQ-3DSSDT) is engaged in obtaining displacement field in the whole structure. The validity of the results is examined by comparing to a similar problem published in literature. The results of the buckling behavior of the structure in different boundary conditions are presented based on the critical temperature rise and critical external voltage. It is demonstrated that increase in the nonlocal and gradient length scale factor have contradicting effects on the critical temperature rise. On the other hand, increase in the applied external voltage cause increase in the critical temperature. Effects of other parameters like geometrical parameters and grading indices are presented and discussed in details.

Analysis of Thermal Oxide Behavior with Isothermal Degradation of TBC Systems Applied to Single Crystal Superalloy (단결정 초내열합금에 적용된 열차폐코팅의 등온열화에 따른 산화물 거동분석)

  • Kim, K.;Wee, S.;Choi, J.;Kim, D.;Song, H.;Lee, J.;Seok, C.S.;Chung, E.S.;Kwon, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • In the field of combined cycle power generation, thermal barrier coating(TBC) protects the super-heat-resistant alloy, which forms the core component of the gas turbine, from high temperature exposure. As the turbine inlet temperature(TIT) increases, TBC is more important and durability performance is also important when considering maintenance cost and safety. Therefore, studies have been made on the fabrication method of TBC and super-heat-resistant alloy in order to improve the performance of the TBC. In recent years, due to excellent properties such as high temperature creep resistance and high temperature strength, turbine blade material have been replaced by a single crystal superalloy, however there is a lack of research on TBC applied to single crystal superalloy. In this study, to understand the isothermal degradation performance of the TBC applied to the single crystal superalloy, isothermal exposure test was conducted at various temperature to derive the delamination life. The growth curve of thermally grown oxide(TGO) layer was predicted to evaluate the isothermal degradation performance. Also, microstructural analysis was performed by scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the effect of mixed oxide formation on the delamination life.