• Title/Summary/Keyword: mechanical and thermal behavior

Search Result 986, Processing Time 0.024 seconds

Numerical assessment of nonlocal dynamic stability of graded porous beams in thermal environment rested on elastic foundation

  • Al-Toki, Mouayed H.Z.;Ali, Hayder A.K.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.455-461
    • /
    • 2022
  • Numerical assessment of the dynamic stability behavior of nonlocal beams rested on elastic foundation has been provided in the present research. The beam is made of fucntional graded (FG) porous material and is exposed to thermal and humid environments. It is also consiered that the beam is subjected to axial periodic mechanical load which especific exitation frequency leading to its instability behavior. Beam modeling has been performed via a two-variable theory developed for thick beams. Then, nonlocal elasticity has been used to establish the governing equation which are solved via Chebyshev-Ritz-Bolotin method. Temperature and moisture variation showed notable effects on stability boundaries of the beam. Also, the stability boundaries are affected by the amount of porosities inside the material.

A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.581-593
    • /
    • 2021
  • This model is proposed to describe the buckling behavior of Carbon Nanotubes (CNTs) embedded in an elastic medium taking into account the combined effects of the magnetic field, the temperature, the nonlocal parameter, the number of walls. Using Eringen's nonlocal elasticity theory, thin cylindrical shell theory and Van der Waal force (VdW) interactions, we develop a system of partial differential equations governing the buckling response of CNTs embedded on Winkler, Pasternak, and Kerr foundations in a thermal-magnetic environment. The pre-buckling stresses are obtained by applying airy's stress function and an adjacent equilibrium criterion. To estimate the nonlocal critical buckling load of CNTs under the simultaneous effects of the magnetic field, the temperature change, and the number of walls, an optimization technique is proposed. Furthermore, analytical formulas are developed to obtain the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. These formulas take into account VdW interactions between adjacent tubes and the effect of terms involving differences in tube radii generally neglected in the derived expressions of the critical buckling load published in the literature. Most scientific research on modeling the effects of magnetic fields is based on beam theories, this motivation pushes me to develop a cylindrical shell model for studying the effect of the magnetic field on the static behavior of CNTs. The results show that the magnetic field has significant effects on the static behavior of CNTs and can lead to slow buckling. On the other hand, thermal effects reduce the critical buckling load. The findings in this work can help us design of CNTs for various applications (e.g. structural, electrical, mechanical and biological applications) in a thermal and magnetic environment.

A NUMERICAL STUDY ON THERMAL DESIGN OF A LARGE-AREA HOT PLATE FOR THERMAL NANOIMPRINT LITHOGRAPHY (나노임프린트 장비용 대면적 열판 열설계를 위한 수치 연구)

  • Park, G.J.;Lee, J.J.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.90-98
    • /
    • 2016
  • A numerical study is conducted on thermal performance of a large-area hot plate specially designed as a heating and cooling tool for thermal nanoimprint lithography process. The hot plate has a dimension of $240mm{\times}240mm{\times}20mm$, in which a series of cartridge heaters and cooling holes are installed. The material is stainless steel selected for enduring the high molding pressure. A numerical model based on the ANSYS Fluent is employed to predict the thermal behavior of the hot plate both in heating and cooling phases. The PID thermal control of the device is modeled by adding user defined functions. The results of numerical computation demonstrate that the use of cartridge heaters provides sufficient heat-up performance and the active liquid cooling in the cooling holes provides the required cool-down performance. However, a crucial technical issue is raised that the proposed design poses a large temperature non-uniformity in the steady heating phase and in the transient cooling phase. As a remedy, a new hot plate in which heat pipes are installed in the cooling holes is considered. The numerical results show that the installation of heat pipes could enhance the temperature uniformity both in the heating and cooling phases.

Vibration analysis thermally affected viscoelastic nanosensors subjected to linear varying loads

  • Ebrahimi, Farzad;Babaei, Ramin;Shaghaghi, Gholam Reza
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.399-422
    • /
    • 2018
  • Unwanted vibration is an issue in many industrial systems, especially in nano-devices. There are many ways to compensate these unwanted vibrations based on the results of the past researches. Elastic medium and smart material etc. are effective methods to restrain unnecessary vibration. In this manuscript, dynamic analysis of viscoelastic nanosensor which is made of functionally graded (FGM) nanobeams is investigated. It is assumed that, the shaft is flexible. The system is modeled based on Timoshenko beam theory and also environmental condition, external linear varying loads and thermal loading effect are considered. The equations of motion are extracted by using energy method and Hamilton principle to describe the translational and shear deformation's behavior of the system. Governing equations of motion are extracted by supplementing Eringen's nonlocal theory. Finally vibration behavior of system especially the frequency of system is developed by implementation Semi-analytical differential transformed method (DTM). The results are validated in the researches that have been done in the past and shows good agreement with them.

Mechanical Behavior of $Al_2O_3$ Dispersed CFRP Hybrid Composites at Room and Cryogenic Temperature

  • Manwar Hussain;Choa, Yong-Ho;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.390-394
    • /
    • 1999
  • Al2O3 particles were dispersed into carbon fiber reinforced epoxy composites to fabricate hybrid epoxy based composites. Interface behavior and mechanical properties of these hybrid composites were studied at room and liquid nitrogen temperature and liquid nitrogen temperature and the results were compared with the those of carbon fiber reinforced composites to investigate their applicability at room and cryogenic temperature. Young's modulus in-perpendicular to fiber direction and interlaminar shear strength at room temperature and the thermal contraction down to cryhogenic temperature were improved significantly by the addition of AL2O3 filler into the epoxy matrix. The effect of Al2O3 particle addition on mechanical properties were discussed.

  • PDF

Thermal Behavior Variations in Coating Thickness Using Pulse Phase Thermography

  • Ranjit, Shrestha;Chung, Yoonjae;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.259-265
    • /
    • 2016
  • This paper presents a study on the use of pulsed phase thermography in the measurement of thermal barrier coating thickness with a numerical simulation. A multilayer heat transfer model was ussed to analyze the surface temperature response acquired from one-sided pulsed thermal imaging. The test sample comprised four layers: the metal substrate, bond coat, thermally grown oxide and the top coat. The finite element software, ANSYS, was used to model and predict the temperature distribution in the test sample under an imposed heat flux on the exterior of the TBC. The phase image was computed with the use of the software MATLAB and Thermofit Pro using a Fourier transform. The relationship between the coating thickness and the corresponding phase angle was then established with the coating thickness being expressed as a function of the phase angle. The method is successfully applied to measure the coating thickness that varied from 0.25 mm to 1.5 mm.

Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam

  • Vinyas, M.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.481-495
    • /
    • 2017
  • The present article examines the static response of multilayered magneto-electro-elastic (MEE) beam in thermal environment through finite element (FE) methods. On the basis of the minimum total potential energy principle and the coupled constitutive equations of MEE material, the FE equilibrium equations of cantilever MEE beam is derived. Maxwell's equations are considered to establish the relation between electric field and electric potential; magnetic field and magnetic potential. A simple condensation approach is employed to solve the global FE equilibrium equations. Further, numerical evaluations are made to examine the influence of different in-plane and through-thickness temperature distributions on the multiphysics response of MEE beam. A parametric study is performed to evaluate the effect of stacking sequence and different temperature profiles on the direct and derived quantities of MEE beam. It is believed that the results presented in this article serve as a benchmark for accurate design and analysis of the MEE smart structures in thermal applications.

The effects of thermo-mechanical behavior of living tissues under thermal loading without energy dispassion

  • Ibrahim Abbas;M. Saif AlDien;Mawahib Elamin;Alaa El-Bary
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.61-72
    • /
    • 2024
  • This study seeks to develop analytical solutions for the biothermoelastic model without accounting for energy dissipation. These solutions are then applied to estimate the temperature changes induced by external heating sources by integrating relevant empirical data characterizing the biological tissue of interest. The distributions of temperature, displacement, and strain were obtained by utilizing the eigenvalues approach with the Laplace transforms and numerical inverse transforms method. The impacts of the rate of blood perfusion and the metabolic activity parameter on thermoelastic behaviors were discussed specifically. The temperature, displacement, and thermal strain results are visually represented through graphical representations.

Experimental Study on Single Bubble Growth Under Subcooled, Saturated, and Superheated Nucleate Pool Boiling

  • Kim Jeong-Bae;Lee Jang-Ho;Kim Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.692-709
    • /
    • 2006
  • Nucleate pool boiling experiments with constant wall temperature were performed using pure R1l3 for subcooled, saturated, and superheated pool conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant wall temperature and to measure the instantaneous heat flow rate accurately with high temporal and spatial resolutions. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble geometry was obtained from the captured bubble images. The effect of the pool conditions on the bubble growth behavior was analyzed using dimensionless parameters for the initial and thermal growth regions. The effect of the pool conditions on the heat flow rate behavior was also examined. This study will provide good experimental data with precise constant wall temperature boundary condition for such works.

Physical and Chemical Properties of Silk Fiber Treated with Calcium Nitrate (질산칼슘 처리농도에 따른 수축견사의 이화학적 특성)

  • 이광길;이용우
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.1
    • /
    • pp.70-77
    • /
    • 1998
  • This study was carried out in order to find out the relationship between physical and chemical properties of silk fiber treated by concentrated calcium nitrate solution. The tensile, thermal and dynamic mechanical properties are also examined on Ca(NO3)2 treated silk fibers. The tensile properties of silk fibers treated by calcium nitrate changed with a concentration. The thermal behavior were also affected by the concentration of calcium nitrate. The degradation temperature (endotherms) and glass transition temperature shifted to lower temperature as the treated concentration increased. It is thought that the physical properties are strongly related to the structure and morphology of Ca(NO3)2 treated silk fibers. As a result, these give property changes with a concentration dependence.

  • PDF