• Title/Summary/Keyword: mechanical and thermal behavior

Search Result 986, Processing Time 0.026 seconds

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Effects of Insulation Layer upon the Thermal Behavior of Linear Motors

  • Eun, In-Ung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.896-905
    • /
    • 2003
  • A linear motor has many advantages next to conventional feed mechanisms: high transitional speed and acceleration, high control performance, and good positioning accuracy at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has a long lifetime, and is easy to assemble. A disadvantage of the linear motor is low efficiency and resultant high-temperature rise in itself and neighboring structures during operation. This paper presents the thermal behavior of the linear motor as a feed mechanism in machine tools. To improve the thermal behavior, an insulation layer is used. By placing the insulation layer between the primary part and the machine table, both the temperature difference and the temperature fluctuation in the machine table due to a varying motor load are reduced.

A Study on Thermal Characteristics of Adaptor Housing for Commercial Vehicles according to Molten Metal Condition (용탕조건에 따른 상용 차량용 어댑터 하우징의 열적특성에 관한 연구)

  • Ko, Dong-Guk;Myung, Soon-Sik;Kang, Byeong-Yong;Kim, Min-Soo
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.745-750
    • /
    • 2018
  • In this study, the thermal behavior of adaptor housing was analyzed by the numerical method. The boundary conditions used to die casting process were the temperature of molten metal and injection time. As the temperature of the molten metal increased, the tensile strength of the product decreased by the blow hole generated in the molten metal, and the decreasing tendency was gradually decreased. As the injection time of the molten metal increased, the heat flux rose, but the degree of the increase was very small. So, the injection time of the molten metal had little effect on the thermal behavior and diffusion of the adapter housing. As a result, the heat of the molten metal was transferred into the housing and the thermal behavior spread widely.

Thermal post-buckling behavior of imperfect graphene platelets reinforced metal foams plates resting on nonlinear elastic foundations

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;H.B. Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.251-259
    • /
    • 2024
  • In this paper, the thermal post-buckling behavior of graphene platelets reinforced metal foams (GPLRMFs) plate with initial geometric imperfections on nonlinear elastic foundations are studied. First, the governing equation is derived based on the first-order shear deformation theory (FSDT) of plate. To obtain a single equation that only contains deflection, the Galerkin principle is employed to solve the governing equation. Subsequently, a comparative analysis was conducted with existing literature, thereby verifying the correctness and reliability of this paper. Finally, considering three GPLs distribution types (GPL-A, GPL-B, and GPL-C) of plates, the effects of initial geometric imperfections, foam distribution types, foam coefficients, GPLs weight fraction, temperature changes, and elastic foundation stiffness on the thermal post-buckling characteristics of the plates were investigated. The results show that the GPL-A distribution pattern exhibits the best buckling resistance. And with the foam coefficient (GPLs weight fraction, elastic foundation stiffness) increases, the deflection change of the plate under thermal load becomes smaller. On the contrary, when the initial geometric imperfection (temperature change) increases, the thermal buckling deflection increases. According to the current research situation, the results of this article can play an important role in the thermal stability analysis of GPLRMFs plates.

Finite Element Analysis of Tempearture and Thermal Struess of Work Roll in Hot Strip Rolling (유한요소법을 이용한 열연중 워크롤의 온도 및 열응력)

  • 손성강;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.231-235
    • /
    • 1999
  • An integrated finite element-based model is presented for the prediction of the three dimensional, transient thermo-mechanical behavior of the work roll in hot strip rolling. The model is comprised of basic finite element models which are incorporated into an iterative solution procedure to deal with the interdependence between the thermo-mechanical behavior of the strip and that of work roll, which arises from roll-strip contact, as well as with the interdependence between the thermal and mechanical behavior. Demonstrated is the capability of the model to reveal the detailed aspects of the thermo-mechanical behavior and to reflect the effect of various process parameters.

  • PDF

Evaluation of Thermal Shock Damage of Metal Matrix Composite Using Ultasonics (초음파를 이용한 금속기지 복합재료의 열충격 손상 평가)

  • Kang, Moon-Phil;Lee, Min-Rae;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1480-1487
    • /
    • 2005
  • Metal matrix composites(MMCs) have been rapidly becoming one of the strongest candidates for structural materials fur many high temperature application. However, among the various high temperature environments in which metal matrix composites was applied, thermal shock is known to cause significant degradation in most MMC system. Due to the appreciable difference in coefficient of thermal expansion(CTE) between reinforcement and metal matrix, internal stresses are generated following temperature changes. Infernal stresses affect degradation of mechanical properties of MMC by causing microscopic damage in interface and matrix during thermal cycling. Therefore, the nondestructive evaluation on thermal shock damage behavior of SiC/A16061 composite has been carried out using ultrasonics. For this study, SiC fiber reinforced metal matrix composite specimens fabricated by a squeeze casting technique were thermally cycled in the temperature range 298$\~$673 K up to 1000cyc1es. Three point bending test was conducted to investigate the efffct of thermal shock damage on mechanical properties. The relationship between thermal shock damage behavior and the propagation characteristics of surface wave and SH-ultrasonic wave was discussed by considering the result of SEM observation of fracture surface.

Thermal Shock Resistance of Bilayered YSZ Thermal Barrier Coating

  • Lee, Dong Heon;Kim, Tae Woo;Lee, Kee Sung;Kim, Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.452-460
    • /
    • 2018
  • This study investigate changes in mechanical behaviors such as indentation load-displacement and hardness of thermal barrier coatings (TBCs) using cycling of thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/super alloy are prepared using different starting granules, 204C-NS and 204NS commercial powers, and the effect of double layers of 204C-NS on 204NS and 204NS on 204C-NS are investigated. The highest temperature applied during thermal shock test is $1100^{\circ}C$ and the maximum number of cycles is 1,200. The results indicate that bilayered TBC showed a relatively mechanically resistant property during thermal shock cycles and that the mechanical behavior is influenced by the microstructure of TBCs by exposure to high temperature during tests or different starting granules.

Beryllium oxide utilized in nuclear reactors: Part I: Application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods

  • Ming-dong Hou;Xiang-wen Zhou;Bing Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4393-4411
    • /
    • 2022
  • In recent years, beryllium oxide has been widely utilized in multiple compact nuclear reactors as the neutron moderator, the neutron reflector or the matrix material with dispersed nuclear fuels due to its prominent properties. In the past 70 years, beryllium oxide has been studied extensively, but rarely been systematically organized. This article provides a systematic review of the application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods of beryllium oxide. Data from previous literature are extracted and sorted out, and all of these original data are attached as the supplementary material, so that subsequent researchers can utilize this paper as a database for beryllium oxide research in reactor design or simulation analysis, etc. In addition, this review article also attempts to point out the insufficiency of research on beryllium oxide, and the possible key research areas about beryllium oxide in the future.

A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method (유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants (원전 안전 3 등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 인장 피로특성 평가)

  • Kim, Jong Sung;Lee, Young Ju;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.