• Title/Summary/Keyword: mechanical and thermal behavior

Search Result 986, Processing Time 0.025 seconds

Investigation of the Conjugate Heat Transfer and Wall Thermal Boundary Conditions (복합열전달과 열경계조건에 관한 연구)

  • Chang, Byong Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.33-42
    • /
    • 1999
  • The effects of wan thermal boundary condition were investigated for a uniform wall temperature, a uniform wall heat flux, and for coupled heat conduction In the channel wall with transverse rectangular ribs. Numerical investigations for steady laminar flow show behavior similar to that observed experimentally in the separated flow region for flow over a cylinder. Conjugate heat transfer with a low solid-fluid thermal conductivity ratio does not lead to the same results as for the uniform heat flux boundary condition, and heat transfer reversal is found on the back sides of the ribs.

THE WELDABILITY AND MECHANICAL BEHAVIOR OF MEDIUM CARBON STEEL IN CW Nd:YAG LASER WELDING

  • Bang, Han-Sur;Kim, Young-Pyo;Seiji Katayama;Chang, Woong-Seong;Lee, Chang-Woo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.626-631
    • /
    • 2002
  • This paper describes the weldability and mechanical behavior of JIS S45C medium carbon steel (corresponding to KS SM45C and SAE 1045) for machine structures in CW Nd:YAG laser welding. ill general, medium carbon steels have a limited application to the industrial fields in spite of good mechanical characteristics. This is due to welding difficulty because of the high carbon contents and impurities in this material. Therefore, in this study the laser weldability of medium carbon steel with adjusted contents of S and P has been investigated in order to extend the application to medium carbon steels. Several experiments and numerical simulations have been conducted to determine the characteristics of mechanical behavior in CW Nd:YAG laser welds. The results of the simulations concur with the experiment results. From the result of this study, the application possibility of CW Nd:YAG laser welding to medium carbon steel has been confirmed. Also, the appropriateness of mechanical behavior simulation has been verified to analyze and predict the welding phenomena.

  • PDF

The Weldability and Mechanical Behavior of Medium Carbon Steel in CW Nd:YAG Laser Welding

  • Bang, H.S.;Kim, Y.P.;Katayama, S.;Chang, W.S.;Lee, C.W.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • This paper describes the weldability and mechanical behavior of JIS S45C medium carbon steel (corresponding to KS SM45C and SAE 1045) for machine structures in CW Nd:YAG laser welding. In general, medium carbon steels have a limited application to the industrial fields in spite of good mechanical characteristics. This is due to welding difficulty because of the high carbon contents and impurities in this material. Therefore, in this study the laser weldability of medium carbon steel with adjusted contents of S and P has been investigated in order to extend the application to medium carbon steels. Several experiments and numerical simulations have been conducted to determine the characteristics of mechanical behavior in CW Nd:YAC laser welds. The results of the simulations concur with the experiment results. From the result of this study, the application possibility of CW Nd:YAG laser welding to medium carbon steel has been confirmed. Also, the appropriateness of mechanical behavior simulation has been verified to analyze and predict the welding phenomena.

  • PDF

Fracture Behavior of Graphite Material at Elevated Temperatures Considering Oxidation Condition (산화환경을 고려한 흑연 내열재의 고온파단특성)

  • Choi, Hoon Seok;Kim, Jae Hoon;Oh, Kawng Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1091-1097
    • /
    • 2015
  • Graphite material has been widely used for making the rocket nozzle throat because of its excellent thermal properties. However, when compared with typical structural materials, graphite is relatively weak with respect to both strength and toughness, owing to its quasi-brittle behavior, and gets oxidized at $450^{\circ}C$. Therefore, it is important to evaluate the thermal and mechanical properties of this material for using it in structural applications. This study presents an experimental method to investigate the fracture behavior of ATJ graphite at elevated temperatures. In particular, the effects of major parameters such as temperature, loading, and oxidation conditions on strength and fracture characteristics were investigated. Uniaxial compression and tension tests were conducted in accordance with the ASTM standard at room temperature, $500^{\circ}C$, and $1,000^{\circ}C$. Fractography analysis of the fractured specimens was carried out using an SEM.

Thermo-mechanical and Flexural Analysis of WB-PBGA Package Using Moire Interferometry (무아레 간섭계를 이용한 WB-PBGA 패키지의 온도변화 및 굽힘하중에 대한 거동해석)

  • Han, Bong-Tae;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1302-1308
    • /
    • 2002
  • Thermo-mechanical and flexural behavior of a wire-bond plastic ball grid array (WB-PBGA) package are characterized by high sensitive moire interferometry. Moire fringe patterns are recorded and analyzed for several bending loads and temperatures. At the temperature higher than $100^{\circ}C$, the inelastic deformation in solder balls become more dominant, so that the bending of the molding compound decreases while temperature increases. The deformation caused by thermally induced bending is compared with that caused by mechanical bending. The strain results show that the solder ball located at the edge of the chip has largest shear strain by the thermal load while the maximum average shear strain by the bending moment occurs in the end solder.

Thermal Behavior and Kinetics of Coal Blends during Devolatilization (탈휘발화 과정에서 혼탄의 반응률과 열적 거동에 관한 연구)

  • Ryu, Kwang-Il;Kim, Ryang-Gyoon;Li, Dong-Fang;Wu, Ze-Lin;Jeon, Chung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.121-126
    • /
    • 2013
  • The objective of this research is to predict the TG curve of blends of bituminous coal and sub-bituminous coal during devolatilization. TSL (Thermal Shock Large) TGA was used for Experiments, and Coats-redfern method was used for reaction order calculation. Based on reaction order, sum method was verified to be suitable for a single coal, then, prediction and comparison of TG curve of coal blends was conducted using both of WSM (Weight Sum Method) and MWSM (Modified Weight Sum Method), where the latter was developed in this research. The presented experiment results and WSM & MWSM were showed to be reasonable using linear least square method. MWSM performed more accurately than WSM for the case that TG curve had different slopes and the case that sharp weight loss happened due to release of volatile matter. The results showed that it's possible to predict the thermal behavior of coal blends during devolatilization based on the thermal behavior of single coals.

Thermal Shock Resistance and Thermal Expansion Behavior of $Al_2TiO_5$ Ceramics

  • Kim, Ik-Jin
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.179-193
    • /
    • 2000
  • Aluminium titanate (Al₂TiO5) with an excellent thermal shock resistant and a low the expansion coefficient was obtained by solid solution with MgO, SiO₂, and ZrO₂ in the Al₂TiO5 lattice or in the grain boundary solution through electrofusion in an arc furnace. However, these materials have low mechanical strength due to the presence of microcracks developed by a large difference in thermal expansion coefficients along crystallographic axes. Pure Al₂TiO5 tends to decompose into α-Al₂O₃ and TiO₂-rutile in the temperature range of 750-1300℃ that rendered it apparently useless for industrial applications. Several thermal shock tests were performed: Long therm thermal annealing test at 1100℃ for 100h; and water quenching from 950 to room temperature (RT). Cyclic thermal expansion coefficients up to 1500℃ before and after decomposition tests was also measured using a dilatometer, changes in the microstructure, thermal expansion coefficients, Young's modulus and strengths were determined. The role of microcracks in relation to thermal shock resistance and thermal expansion coefficient is discussed.

  • PDF

Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites

  • Khalaf, Basima Salman;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • This research is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size beam reinforced with graphene platelets (GPLs) based on geometric imperfection effects. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. The micro-size beam is considered to be perfect (ideal) or imperfect. Buckling mode shape of the micro-size beam has been assumed as geometric imperfection. Modified couple stress theory has been used for describing scale-dependent character of the beam having micro dimension. Via an analytical procedure, post-buckling path of the micro-size beam has been derived. It will be demonstrated that nonlinear buckling characteristics of the micro-size beam are dependent on geometric imperfection amplitude, thermal loading, graphene distribution and couple stress effects.

Processing and Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Poly(butylene succinate) Blends (폴리유산/폴리부틸렌숙시네이트 블랜드의 가공 및 기계적, 열적, 형태학적 특성)

  • Kim, Dae Keun;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.14-21
    • /
    • 2014
  • In the present work, PLA/PBS blends with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) at different contents were processed by using a twin-screw extruder and an injection molding machine, and then their mechanical, thermal and morphological properties were investigated. The mechanical properties such as flexural strength, flexural modulus, tensile strength and tensile modulus and thermal properties such as melting behavior, dynamic mechanical thermal properties and thermal stability significantly depended on the contents of PLA and PBS. However, the heat deflection temperature of the blends was not significantly influenced by the contents of PLA and PBS. Also, the fracture surfaces of PLA/PBS blends were changed from a brittle pattern to a ductile pattern with increasing the PBS contents.

The Mechanical Properties of Several Fiber Reinforced Cement under Different Curing Condition (양생조건에 따른 각종 섬유보강시멘트의 기계적 성질)

  • 정문영;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.437-442
    • /
    • 1998
  • In order to investigate the mechanical properties of several fibers for reinforced cement these speciments with 2wol% of ARG and organic fibers were formed by vacuum extrusion process. After steam curing and autoclaving the flexural strength and the elastic modulus of FRC were measured. It was found that the ARG-FRC showed the elastic-brittle fracture behavior in both steam cured and autoclaved condition. And also the steam cured PP and PVA-FRC had elstic-plastic behavior but their ductility were reduced and changed to the elastic-brittle after autoclaving This change in mechanical behavior was found to be related to the thermal stablity of thes organic fibers.

  • PDF