• Title/Summary/Keyword: mechanical analysis

Search Result 21,890, Processing Time 0.045 seconds

A Study on the Direction of Developing a Simulator for Performance Evaluation of Pulse Wave Detectors Through a Review of the Development Status of Cardiovascular Simulators (심혈관계 시뮬레이터 개발 동향 분석을 통한 맥파검사용기기 성능평가 시뮬레이터 연구개발 방향 모색)

  • Lee, Ju-Yeon;Kim, Jaeyoung;Go, Dong-Hyun;Lee, Ji-Won;Lee, Tae-Hee;Park, Chang-Won;Lee, Su-Kyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.136-146
    • /
    • 2022
  • In this study, it is intended to provide basic data that can help develop a cardiovascular simulator for performance evaluation of pulse wave detectors by identifying the development status of domestic and overseas cardiovascular simulators. A total of 119 papers were selected by excluding duplicate literature, gray literature, and literature not related to a cardiovascular simulator. Based on the selected literature, the research trend of cardiovascular simulators was analyzed. As a result of analyzing the purpose of the study, most of the simulators were developed to evaluate the hemodynamic properties of artificial hearts and valves. In addition, it was used for simulation evaluation or hemodynamic studies such as pulse wave studies. As a result of analyzing configurations of the simulators, a heart most often consisted of only one left ventricle. For blood vessels, the Windkessel model was most often constructed using chambers and valves. In most studies, blood was reproduced by mixing glycerin and water to reproduce both density and viscosity. In addition, as a result of analysis from the perspective of medical device performance evaluation, simulators for evaluating artificial heart and artificial valves have been studied a lot, whereas simulators for blood pressure, pulse wave, and blood flow devices have been relatively insignificant. Based on the review results, we suggested considerations when developing a simulator for performance evaluations of a pulse wave detector.

Image Evaluation of Projection Method in Chest Radiography (흉부 엑스선 촬영 시 촬영기법에 따른 영상 평가)

  • Ahn, Byung-Ju;Lee, Jun-Haeng
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.217-223
    • /
    • 2022
  • In this study, images taken using a grid and images taken using Air Gap Technique were evaluated in X-ray chest radiography. Subjective Evaluation The ROC (Receiver Operating Characteristic) evaluation was evaluated by 5 radiologists who had worked for more than 10 years in the radiology department of a university hospital. Objective evaluation SNR (Signal to noise ratio) was evaluated. As a result of the analysis, the Cronbach Alpha value was 0.714, which was significantly higher. In the Air Gap Technique, the distance between the phantom and the subject was set at 20 cm, and the image was taken with a tube voltage of 100 kVp, a tube current and a recording time of 8 mAs. In the ROC (Receiver Operating Characteristic) evaluation, the highest score was obtained with 18 score and an objective evaluation SNR (signal to noise ratio) of 6,149 scored. Also, in the imaging method using a grid, when the distance between the phantom and the constant receptor is 15 cm apart, and the tube voltage is 110 kVp, the tube current and the recording time are taken at 8 mAs, the ROC evaluation score is 19 and the objective evaluation SNR (Signal to noise ratio) is the highest with 6.622 scored. Therefore, if the Air Gap Technique imaging method is used, which overcomes the shortcomings such as delay in reading, increase in patient's exposure dose, and shortening of mechanical lifespan, as well as re-radiography due to the cut-off phenomenon of the grid that appears using the grid, the It is thought that it will be very helpful for chest imaging, including the case of using a portable X-ray imaging device.

A Study on the Properties of Transition Metal Nitride Coating Materials for the Recovery of Tungsten and Rare Metals (텅스텐 및 희유금속 회수를 위한 초경합금 전이금속질화물 코팅소재 특성연구)

  • Kim, Jiwoo;Kim, Myungjae;Kim, Hyokyeong;Park, Sohyun;Seo, Minkyeong;Kim, Jiwoong
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.46-55
    • /
    • 2022
  • The recycling of coated cemented carbide scraps is becoming increasingly significant for the recovery of rare metals. However, coatings consisting of Group IV and V transition metal nitrides are one of the challenging factors in obtaining high-purity materials. We investigated the structural, elastic, and mechanical properties of Group IV and V transition-metal nitrides (TiN, VN, ZrN, NbN, HfN, and TaN) using first-principle calculations. Convergence tests were performed to obtain reliable calculated results. The equilibrium structures of the nitrides were in good agreement with those of a previous study, indicating the reliability of the data. Group IV transition metal nitrides show a higher covalent bonding nature. Thus, they exhibit a higher degree of brittleness than that of Group V transition metal nitrides. In contrast, Group V transition metal nitrides show weaker resistance to shear loading and more ductile behavior than Group IV transition metal nitrides because of the metallic bonds characterized by valence electron concentration. The results of the crystal orbital Hamilton population analysis showed good agreement with the shear resistance tendencies of all transition metal nitrides.

Case Study of Application of Global Industrial Technology Curriculum for International Students - Focusing on J College - (외국인 유학생의 글로벌 산업기술 교육과정 적용 사례 연구 -J 대학을 중심으로-)

  • Song, Yujin;Lee, Jongkil
    • Journal of Practical Engineering Education
    • /
    • v.13 no.3
    • /
    • pp.461-471
    • /
    • 2021
  • This study investigated the application and satisfaction of the global industrial technology curriculum for foreign students at J University in Korea. In order to derive the global industrial technology curriculum, industry needs were analyzed, and the appropriateness of the curriculum was identified through the current status of the root industry. In order to investigate the satisfaction with the application of the global industrial technology curriculum, a questionnaire survey was conducted in the form of an in-person interview for two months from August to September 2021 for foreign students. The questionnaire surveys included general information of the subjects, the status of completion of the curriculum, questions about class satisfaction, the process of obtaining certifications, and whether or not they were employed. As a result of the study, the reasons for choosing the curriculum of the respondents were their interest in subjects related to the root industry (welding, machining, etc.) and the issuance of Korean employment and visas (E-7). The most preferred subject was welding practice at 36.8%, and in terms of subjects considered necessary, the subject of basic major terminology was the most at 29.2%. The difference in satisfaction between graduates and current students who applied the same curriculum was tested, and as a result of the analysis, it was confirmed that there was no difference in satisfaction between current students and graduates through the t test (significance level p=0.05). We believe that this study is meaningful in that it provides basic data for the domestic industrial technology curriculum for foreign students and suggests the direction of related research in a time when the existence of universities is threatened due to the decrease in the school-age population.

Petrological Characteristics and Nondestructive Deterioration Assessments for Foundation Stones of the Sebyeonggwan Hall in Tongyeong, Korea (통영 세병관 초석의 암석학적 특성 및 비파괴 손상평가)

  • Han, Doo Roo;Kim, Sung Han;Park, Seok Tae;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.199-212
    • /
    • 2021
  • The Sebyeonggwan Hall (National Treasure No. 305) is located on the Naval Headquarter of Three Provinces in Tongyeong, and it has partly undergone with several rebuilding, remodeling, repairing and restorations since it's the first establishment in Joseon Dynasty (AD 1605) of ancient Korea. This study focuses on 50 foundation stones that comprise the Sebyeonggwan. These stones are made of six rock types and currently have various shapes of the surface damages. As the foundation stones, the dominant rock type was dacitic lapilli tuffs, and provenance-based interpretation was performed to supply alternative stones for conservation. Most of the provenance rocks for foundation stones showed highly homogeneity with their corresponding stones of petrography, mineralogy and magnetic susceptibility. According to surface deterioration assessments, the most serious damages of the stones were blistering and scaling. The deterioration mechanism was identified through the analysis of inorganic contaminants, and the primary reason is considered salt weathering caused by sea breeze and other combined circumstances. Based on the mechanical durability of the stones, there was no foundation stone that required the replacement of its members attributed to the degradation of the rock properties, but conservation treatment is considered necessary to delay superficial damage. The foundation stones are characterized by a combined outcome of multiple petrological factors that caused physical damage to surfaces and internal defects. Therefore, it's required to diagnosis and monitoring the Sebyeonggwan regularly for long-term preservation.

A CFD Study on Aerodynamic Performances by Geometrical Configuration of Guide Vanes in a Denitrification Facility (탈질 설비 내 안내 깃의 기하학적 형상에 따른 공력 성능에 대한 전산 해석적 연구)

  • Chang-Sik, Lee;Min-Kyu, Kim;Byung-Hee, Ahn;Hee-Taeg, Chung
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 2022
  • The flow pattern at the inlet of the catalyst layer in a selective catalytic reduction (SCR) system is one of the key parameters influencing the performance of the denitrification process. In the curved diffusing parts between the ammonia injection grids and the catalyst layers, guide vanes are installed to improve flow uniformity. In the present study, a numerical simulation has been performed to investigate the effect of the geometrical configuration of the guide vanes on the aerodynamic characteristics of a denitrification facility. This application has been made to the existing SCR process in a large-scaled coal-fired power plant. The flow domain to be solved covers the whole region of the flow passages from the exit of the ammonia injection gun to the exit of the catalyst layers. ANSYS-Fluent was used to calculate the three-dimensional steady viscous flow fields with the proper turbulence model fitted to the flow characteristics. The root mean square of velocity and the pressure drop inside the flow passages were chosen as the key performance parameters. Four types of guides vanes were proposed to improve the flow quality compared to the current configuration. The numerical results showed that the type 4 configuration was the most effective at improving the aerodynamic performance in terms of flow uniformity and pressure loss.

The Prognosis of Glyphosate herbicide intoxicated patients according to their salt types (글라이포세이트 중독 환자에서 포함된 염의 종류에 따른 예후의 차이)

  • Jeong, Min Gyu;Keum, Kyoung Tak;Ahn, Seongjun;Kim, Yong Hwan;Lee, Jun Ho;Cho, Kwang Won;Hwang, Seong Youn;Lee, Dong Woo
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.19 no.2
    • /
    • pp.83-92
    • /
    • 2021
  • Purpose: Glyphosate herbicide (GH) is a widely used herbicide and has been associated with significant mortality as poisoned cases increases. One of the reasons for high toxicity is thought to be toxic effect of its ingredient with glyphosate. This study was designed to determine differences in the clinical course with the salt-type contained in GH. Methods: This was a retrospective study conducted at a single hospital between January 2013 and December 2017. We enrolled GH-poisoned patients visited the emergency department. According to salt-type, patients were divided into 4 groups: isopropylamine (IPA), ammonium (Am), potassium (Po), and mixed salts (Mi) groups. The demographics, laboratory variables, complications, and their mortality were analyzed to determine clinical differences associated with each salt-type. Addtionally, we subdivided patients into survivor and non-survivor groups for investigating predictive factors for the mortality. Results: Total of 348 GH-poisoned patients were divided as follows: IPA 248, Am 41, Po 10, and Mi 49 patients. There was no difference in demographic or underlying disease history, but systolic blood pressure (SBP) was low in Po group. The ratio of intentional ingestion was higher in Po and Mi groups. Metabolic acidosis and relatively high lactate level were presented in Po group. As the primary outcome, the mortality rates were as follows: IPA, 26 (10.5%); Am, 2 (4.9%); Po, 1 (10%); and Mi, 1 (2%). There was no statistically significant difference in the mortality and the incidence of complications. Additionally, age, low SBP, low pH, corrected QT (QTc) prolongation, and respiratory failure requiring mechanical ventilation were analyzed as independent predictors for mortality in a regression analysis. Conclusion: There was no statistical difference in their complications and the mortality across the GH-salt groups in this study.

Feasibility Study of a 500-ton Class Patrol Vessel Made of Carbon Fiber Reinforced Polymer (500톤급 탄소섬유 복합소재 경비함 건조가능성 검토)

  • Jang, Jaewon;Lee, Sang-Gyu;Zhang, Haiyang;Maydison, Maydison;Lee, Ju-Hyeong;Oh, Daekyun;Im, Sanghyuk;Kwon, Yongwon;Hwang, Inhyuck;Han, Zhiqiang
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.347-358
    • /
    • 2022
  • Carbon fiber is an excellent structural material, which has been proven in many industries, and the shipbuilding industry is no exception. In particular, in advanced maritime countries, special ships of the Navy and Coast Guard with carbon fiber composite hulls have already been deployed. In Korea, carbon fiber composite materials have been applied to a 10-ton class leisure craft or a 30-ton class patrol, but no research has been done on a hundred of tons or more vessels. In this study, the feasibility study of a 500-ton patrol vessel with a carbon fiber composite hull was conducted through an analysis of similar cases abroad. As a result, it was recognized that the developed hull can be reduced in weight by about 21% to 25% compared to the existing aluminum or FRP hull. It was also confirmed that this light-weight effect can induce the improvement of the maximum speed and the improvement of the operating range via simulations.

An Analysis for the Effect of ESP/gas Lift Hybrid System on Oil Productivity (전기공저펌프/가스리프트 혼합시스템이 오일 생산성에 미치는 영향 분석)

  • Lee, Hyesoo;Iranzi, Joseph;Wang, Jihoon;Son, Hanam
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • Selection of a suitable artificial lift is important in terms of efficient operation and economics for oil production. In general, process of well design includes the selection of artificial lift, but the oil recovery could be enhanced by use of hybrid system combined with two types of artificial lift method according to reservoir condition for oil production. Electric submersible pump (ESP), as a presentative artificial lift method, is a manner for supplying the pressure in the lower part of oil well by using of a multi-stage centrifugal pump with an electric energy. However, there is a disadvantage that has a limit to the application period because of mechanical defection on ESP. Accordingly, it is possible to reduce the shutdown time of production well by applying the ESP/Gas lift hybrid system, which is to switch to a gas lift when an ESP is defective. This study describes the effect of ESP/gas lift hybrid system compared with ESP method for a onshore horizontal well locating in the of Permian basin, USA. As a result of study, ESP/gas lift hybrid system could make more effective productivity than ESP method. Also, we quantitatively predicted how much economic benefit would be obtained when the hybrid system was applied in the production well.

Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry (익형 형상 재설계를 통한 후향익 원심팬의 유동 및 소음성능 개선)

  • Jung, Minseung;Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.555-565
    • /
    • 2021
  • The goal of this study is to improve flow and noise performances of existing backward-curved blade centrifugal fan system used for circulating cold air in a refrigerator freezer by optimally designing airfoil shape. The unique characteristics of the system is to drive cold airflow with two volute tongues in combination with duct system in a back side of a refrigerator without scroll housing generally used in a typical centrifugal fan system. First, flow and noise performances of existing fan system were evaluated experimentally. A P-Q curve was obtained using a fan performance tester in the flow experiment, and noise spectrum was measured in an anechoic chamber in the noise experiment. Then, flow characteristics were numerically analyzed by solving the three-dimensional unsteady Navier-Stokes equations and noise analysis was performed by solving the Ffowcs Williams and Hawkins equation with input from the flow simulation results. The validity of numerical results was confirmed by comparing them with the measured ones. Based on the verified numerical method, blade inlet and outlet angles were optimized for maximum flow rate using the two-factor central composite design of the response surface method. Finally, the flow and noise performances of a prototype manufactured with the optimum design were experimentally evaluated, which showed the improvement in flow and noise performance.