• Title/Summary/Keyword: mechanical analysis

Search Result 21,890, Processing Time 0.051 seconds

Is the Spinal Instability Neoplastic Score Accurate and Reliable in Predicting Vertebral Compression Fractures for Spinal Metastasis? A Systematic Review and Qualitative Analysis

  • Lee, Chang-Hyun;Hong, Jae Taek;Lee, Sun-Ho;Yi, Seong;Sohn, Moon-Jun;Kim, Sung Hwan;Chung, Chun Kee;Korean Spine Oncology Research Society
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.1
    • /
    • pp.4-12
    • /
    • 2021
  • Spinal metastases can present with varying degrees of mechanical instability. The Spinal Instability Neoplastic Score (SINS) was developed as a tool to assess spinal neoplastic-related instability while helping to guide referrals among oncology specialists. Some previous papers suggested that the SINS was accurate and reliable, while others disagreed with this opinion. We performed a systematic review regarding the SINS to evaluate its accuracy and precision in predicting vertebral compression fractures (VCFs). The 21 included studies investigated a total of 2118 patients. Thirteen studies dealt with the accuracy of SINS to predict post-radiotherapy VCFs, and eight dealt with the precision. Among 13 studies, 11 agreed that the SINS categories showed statistically significant accuracy in predicting VCF. Among eight studies, body collapse was effective for predicting VCFs in six studies, and alignment and bone lesion in two studies. Location has no statistical significance in predicting VCFs in any of the eight studies. The precision of SINS categories was substantial to excellent in six of eight studies. Among the six components of the SINS, the majority of the included studies reported that location showed near perfect agreement; body collapse, alignment, and posterolateral involvement showed moderate agreement; and bone lesion showed fair agreement. Bone lesion showed significant accuracy in predicting VCFs in half of eight studies, but displayed fair reliability in five of seven studies. Although location was indicated as having near perfect reliability, the component showed no accuracy for predicting VCFs in any of the studies and deleting or modifying the item needs to be considered. The SINS system may be accurate and reliable in predicting the occurrence of post-radiotherapy VCFs for spinal metastasis. Some components seem to be substantially weak and need to be revised.

A Study on Prediction of EPB shield TBM Advance Rate using Machine Learning Technique and TBM Construction Information (머신러닝 기법과 TBM 시공정보를 활용한 토압식 쉴드TBM 굴진율 예측 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.540-550
    • /
    • 2020
  • Machine learning has been actively used in the field of automation due to the development and establishment of AI technology. The important thing in utilizing machine learning is that appropriate algorithms exist depending on data characteristics, and it is needed to analysis the datasets for applying machine learning techniques. In this study, advance rate is predicted using geotechnical and machine data of TBM tunnel section passing through the soil ground below the stream. Although there were no problems of application of statistical technology in the linear regression model, the coefficient of determination was 0.76. While, the ensemble model and support vector machine showed the predicted performance of 0.88 or higher. it is indicating that the model suitable for predicting advance rate of the EPB Shield TBM was the support vector machine in the analyzed dataset. As a result, it is judged that the suitability of the prediction model using data including mechanical data and ground information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of data.

Numerical Study on the Effect of Diesel Injection Parameters on Combustion and Emission Characteristics in RCCI Engine (RCCI 엔진의 디젤 분사 파라미터에 따른 연소 및 배출가스 특성에 대한 수치적 연구)

  • Ham, Yun-Young;Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2021
  • Low-temperature combustion (LTC) strategies, such as HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), and RCCI (Reactivity Controlled Compression Ignition), have been developed to effectively reduce NOx and PM while increasing the thermal efficiency of diesel engines. Through numerical analysis, this study examined the effects of the injection timing and two-stage injection ratio of diesel fuel, a highly reactive fuel, on the performance and exhaust gas of RCCI engines using gasoline as the low reactive fuel and diesel as the highly reactive fuel. In the case of two-stage injection, combustion slows down if the first injection timing is too advanced. The combustion temperature decreases, resulting in lower combustion performance and an increase in HC and CO. The injection timing of approximately -60°ATDC is considered the optimal injection timing considering the combustion performance, exhaust gas, and maximum pressure rise rate. When the second injection timing was changed during the two-stage injection, considering the combustion performance, exhaust gas, and the maximum pressure increase rate, it was judged to be optimal around -30°ATDC. In the case of two-stage injection, the optimal result was obtained when the first injection amount was set to approximately 60%. Finally, a two-stage injection rather than a single injection was considered more effective on the combustion performance and exhaust gas.

Transient Liquid Phase Sinter Bonding with Tin-Nickel Micro-sized Powders for EV Power Module Applications (주석-니켈 마이크로 분말을 이용한 EV 전력모듈용 천이액상 소결 접합)

  • Yoon, Jeong-Won;Jeong, So-Eun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.71-79
    • /
    • 2021
  • In this study, we have successfully fabricated the Sn-Ni paste and evaluated the bonding properties for high-temperature endurable EV (Electric Vehicle) power module applications. From evaluating of the micro-structural changes in the TLPS (Transient Liquid Phase Sintering) joints with Sn and Ni contents in the Sn-Ni pastes, a lack of Ni powders and Ni particle agglomerations by Ni surplus were observed in the Sn-20Ni and Sn-50Ni joints (in wt.%), respectively. In contrast, relatively dense microstructures are observed in the Sn-30Ni and Sn-40Ni TLPS joints. From differential scanning calorimetry (DSC) thermal analysis results of the fabricated Sn-Ni paste and TLPS bonded joints, we confirmed that the complete reactions of Sn with Ni to form Ni-Sn intermetallic compounds (IMCs) at bonding temperatures occurred, and there is no remaining Sn in the joints after TLPS bonding. In addition, the interfacial reactions and IMC phase changes of the Sn-30Ni joints under various bonding temperatures were reported, and their mechanical shear strength were investigated. The TLPS bonded joints were mainly composed of residual Ni particles and Ni3Sn4 intermetallic phase. The average shear strength tended to increase with increasing bonding temperature. Our results indicated a high shear strength value of approximately 30 MPa at a bonding temperature of 270 ℃ and a bonding time of 30 min.

Numerical investigation on reduction of valve flow noise in high pressure gas pipe using perforated plates (다공판을 이용한 고압 가스 배관 내 밸브 유동 소음 저감에 대한 수치적 고찰)

  • Kim, Gyunam;Ku, Garam;Cheong, Cheolung;Kang, Woong;Kim, Kuksu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • In this study, a numerical methodology is proposed for evaluating valve flow noise in a pipe conveying high pressure gas, and the effects of perforated plates on reduction of such valve flow noise are quantitatively analyzed. First, high-accurate unsteady compressible Large Eddy Simulation techniques are utilized to predict flow and flow noise by a valve in a high-pressure pipe. The validity of the numerical result is confirmed by comparing the predicted wall pressure spectrum with the measured one. Next, the acoustic power of downstream-propagating acoustic waves due to the valve flow is analyzed using an acoustic power formula for acoustic waves propagating on mean flow in a pipe. Based on the analysis results, perforated plates are designed and installed downstream of the valve to suppress the valve flow noise and the acoustic power of downstream-going acoustic waves is predicted by using the same numerical procedure. The reduction by 9.5 dB is confirmed by comparing the predicted result with that of the existing system. Based on these results, the current numerical methodology is expected to be used to reduce valve flow noise in an existing system as well as in a design stage.

Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature (미분구적법을 이용 중면신장 및 회전관성의 영향을 고려한 원형아치의 고유진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic circular arches has been the subject of a large number of investigations. One of the efficient procedures for the solution of ordinary differential equations or partial differential equations is the differential quadrature method DQM. This method has been applied to a large number of cases to overcome the difficulties of the complex computer algorithms, as well as excessive use of storage due to conditions of non-linear geometries, loadings, or material properties. This study uses DQM to analyze the in-plane vibration of the circular arches considering the effects of midsurface extension and rotatory inertia. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The solutions from DQM are compared with exact solutions or other numerical solutions for cases in which they are available and given to analyze the effects of midsurface extension and rotatory inertia on the frequency parameters of the circular arches.

A Study on Loading Method of Large Scaffolding Module for LNG Carriers Using TRIZ (TRIZ를 이용한 LNG 운반선 대형 비계 모듈의 탑재 방안 연구)

  • Park, Myeong-Chul;Shin, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.94-100
    • /
    • 2021
  • To improve the productivity of cargo containment construction for a membrane LNG carrier, it is important to shorten the installation period and process of the scaffolding system, which is a construction workbench of a cargo containment for a membrane LNG carrier. As an effective method, opinions are being gathered to enlarge the lifting unit from the existing two stages to eight stages. On the other hand, the stresses around the pin and hole will increase significantly because of the increase in lifting load according to the large size of the module. The purpose of this study was to establish a new large module-lifting plan by introducing TRIZ to solve these problems. This study adopted a method to utilize 40 inventive principles, which is one of the various problem-solving tools of TRIZ. First, technical contradictions were derived, the engineering parameters were selected. Second, efficient inventive principles were selected to overcome the technical contradictions using a contradiction matrix. Finally, the general and specific solutions were derived through the selected inventive principle, and structural analysis confirmed that the stress generated in the structure was low. The utility of TRIZ was confirmed by the successful lifting of large modules using the established lifting method.

Development of Chicken Carcass Segmentation Algorithm using Image Processing System (영상처리 시스템을 이용한 닭 도체 부위 분할 알고리즘 개발)

  • Cho, Sung-Ho;Lee, Hyo-Jai;Hwang, Jung-Ho;Choi, Sun;Lee, Hoyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.446-452
    • /
    • 2021
  • As a higher standard for food consumption is required, the consumption of chicken meat that can satisfy the subdivided food preferences is increasing. In March 2003, the quality criteria for chicken carcasses notified by the Livestock Quality Assessment Service suggested quality grades according to fecal contamination and the size and weight of blood and bruises. On the other hand, it is too difficult for human inspection to qualify mass products, which is key to maintaining consistency for grading thousands of chicken carcasses. This paper proposed the computer vision algorithm as a non-destructive inspection, which can identify chicken carcass parts according to the detailed standards. To inspect the chicken carcasses conveyed at high speed, the image calibration was involved in providing robustness to the side effect of external lighting interference. The separation between chicken and background was achieved by a series of image processing, such as binarization based on Expectation Maximization, Erosion, and Labeling. In terms of shape analysis of chicken carcasses, the features are presented to reveal geometric information. After applying the algorithm to 78 chicken carcass samples, the algorithm was effective in segmenting chicken carcass against a background and analyzing its geometric features.

Basic Characteristic Verification of High-damping Laminated Solar Panel with Viscoelastic Adhesive Tape for 6U CubeSat Applications (점탄성 테이프를 적용한 6U 큐브위성용 고댐핑 적층형 태양전지판의 기본 특성 검증)

  • Kim, Su-Hyeon;Kim, Hongrae;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.86-94
    • /
    • 2021
  • PCB-based deployable solar panel is mainly used for CubeSat due to its lightweight and easy of electrical connection. However, as the size of solar panel increases, there is a limit to ensuring the structural safety of solar cells due to excessive dynamic displacement under launch vibration environment. In previous mechanical designs, for the minimization of dynamic deflection, panel stiffness is increased by applying additional stiffeners made of various materials such as aluminum or composite. However, it could have disadvantages for CubeSat design requirements due to limited mass and volumes. In this study, a high-damping 6U solar panel was proposed. It had superior damping characteristic with a multi-layered stiffener laminated with viscoelastic acrylic tapes. Basic characteristics of this solar panel were measured through free-vibration tests. Design effectiveness of the solar panel was validated through qualification-level launch vibration test. Based on test results, vibration characteristics of a typical PCB solar panel and the high-damping laminated solar panel were predicted and a comparative analysis was performed.

Flow and Heat Transfer Characteristics of Heat Exchanger Tube Bank with the Sinusoidal Inlet Velocity (정현파 입구 속도 변동에 따른 열교환기 관군의 유동 및 열전달 특성)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2021
  • The change of the vorticity and the temperature distribution in heat exchanger tube bank were analyzed for the flows with the constant inlet velocity and the sinusoidal inlet velocity. The flow frequency characteristics were examined by analyzing power spectral density of lift and drag at a typical circular tube in the tube bank. Karman vortex street could be seen at the upstream region of tube bank for the case of constant inlet velocity. It could be seen that the Karman vortex street was affected by the change of inlet velocity near the circular tubes for the case with the sinusoidal inlet velocity. It was observed that the unsteady temperature distributions for both inlet velocity conditions had almost the same motion as the flow vorticity behavior. The flow frequency for the case with the constant inlet velocity is 37.25Hz, and that with the sinusoidal inlet velocity, the flow frequency is 18.63Hz, which is equal to the sinusoidal inlet velocity. The mean surface Nusselt number(Nu) for overall heat exchanger tube bank was 1051 for the case with the constant inlet velocity and 1117 for the case with the sinusoidal inlet velocity. From the result of heat transfer analysis, it could be seen that Nu with the sinusoidal inlet velocity showed 6.3% increase than that with the constant inlet velocity.