• 제목/요약/키워드: mechanical analysis

검색결과 21,890건 처리시간 0.049초

회전구조물의 진동 해석 및 실험 (Vibration Analysis and Experimental Study for Rotating Sturctures)

  • 박정훈;유홍희
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.272-280
    • /
    • 1997
  • Comparative study on the analysis and experiment for the vibration of a rotating cantilever structure was made in this paper. Analysis results were obtained by using the modeling method which was developed in the previous work. The cross-section thickness variation due to the sensor attachment was additionally considered. In order to verify the accuracy of the analysis results, exerimental results were obtained. The analysis and experimental results were found to be in a good agreement. It was also shown that the aerodynamic and cross-section thickness variation effects significantly influenced the dynamic characteristics of the rotating structure.

초자기변형소자(Terfenol-D)의 기초특성해석에 관한 연구 (A Study on the Fundamental Characteristics Analysis of Giant Magnetostrictive Materials)

  • 김동현;이춘만
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.398-403
    • /
    • 2011
  • Terfenol-D is one of several magnetostrictive materials with property of converting energy into mechanical motion, and vice versa. Magnetostriction is the property that causes certain ferromagnetic materials to change shape in a magnetic field. Terfenol-D is said to produce giant magnetostriction, strain greater than any other commercially available smart material. In this paper, fundamental characteristics analysis of giant magnetostrictive materials(Terfenol-D) has been investigated. The magnetic field analysis is carried out by using finite element method simulation ANSYS. The results show 223N in force and 9.5T in maximum magnetic flux density and 7.56 $10^6A/m$ in maximum magnetic field intensity 1A current. Through the analysis, basic data of Terfenol-D for the application of mechanical system are obtained.

열간압연 가열로 슬라브 이송장치 신뢰도 해석 (Reliability Analysis of Slab Transfer Equipment in Hot Rolling Furnace)

  • 배용환
    • 한국안전학회지
    • /
    • 제21권1호
    • /
    • pp.6-14
    • /
    • 2006
  • The development of automatic production systems have required intelligent diagnostic and monitoring functions to overcome system failure and reduce production loss by the failure. In order to perform accurate operations of the intelligent system, implication about total system failure and fault analysis due to each mechanical component failures are required. Also solutions for repair and maintenance can be suggested from these analysis results. As an essential component of a mechanical system, a bearing system is investigated to define the failure behavior. The bearing failure is caused by lubricant system failure, metallurgical deficiency, mechanical condition(vibration, overloading, misalignment) and environmental effects. This study described slab transfer equipment fault train due to stress variation and metallurgical deficiency from lubricant failure by using FTA.

NUMERICAL ANALYSIS PROCEDURE FOR PREDICTING TEMPERATURE FIELD IN DESIGN OF AUTOMOTIVE FRICTION CLUTCH

  • LEE B.;CHO C.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.61-68
    • /
    • 2006
  • In design of the friction clutches of automobiles, knowledge on the thermo-elasticity a priori is very informative in the initial design stage. Especially, the precise prediction technique of maximum temperature and stress should be requested in design of mechanical clutches for their durability and compactness. In this study, an efficient and reliable analysis technique for the design of the mechanical clutches by using computer modeling and numerical method was developed. A commercial software STAR-$CD^{TM}$ was used to find the convective heat-transfer coefficients. MSC/$NASTRAN^{TM}$ software was followed to predict the temperature of clutch with utilization of estimated coefficients. Some experiments were also performed with a dynamometer to verify the procedure and calibrate the thermal load. As a conclusion, a design procedure, including numerical steps and experimental techniques for calibration, was proposed.

Mechanical Error Analysis of Disk Cam Mechanisms with a Flat-Faced Follower

  • Chang Wen-Tung;Wu Long-Iong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.345-357
    • /
    • 2006
  • By employing the concept of equivalent linkage, this paper presents an analytical method for analyzing the mechanical errors of disk cam mechanisms with a flat-faced follower. The resulting error equations do not really involve the location of the curvature center of the cam profile, and locating the curvature center of the cam profile is not essential. The resulting errors are significantly affected by the pressure angle, and the smaller pressure angle will result in the smaller mechanical error. In the worst case, owing to the joined effects of various design parameters, the accuracy of the follower motion may degrade considerably. For the oscillating follower case, all acceleration error functions have a sudden change at every beginning and at every end of the motion even though the theoretical follower displacement is cycloidal motion.

복합재료 적층판 기계적 체결부 파손시험 및 점진적 파손해석에 대한 연구 (A Study for Failure Test and Progressive Failure Analysis on Composite Laminates Mechanical Joint)

  • 권정식;김진성;양용만;이수용
    • 한국항공우주학회지
    • /
    • 제45권1호
    • /
    • pp.21-29
    • /
    • 2017
  • 복합재료 적층판 기계적 체결부(ASTM D5961 Proc. A, B)에 대하여 치구 설계에서 시험 결과의 해석까지 전체 과정을 제시하였다. 복합재료 적층판 기계적 체결부를 유한요소법을 사용하여 분석하였으며 시험 결과와 비교하였다. 시험편의 파손 거동을 분석하기 위해 점진적 파손해석 방법을 유한요소법에 적용하였다. 시험 파손 하중을 예측하기 위해 3가지 파손이론(최대 응력, 최대 변형률, Tsai-Wu)을 FEM에 적용하였다. 기계적 체결부의 일반적인 변수들을 검토하였으며 주요 변수에 대하여 베어링 강도 차이를 비교하였다.

원전 정상가동조건 적용 방식이 원자로 압력용기 상부헤드 관통 노즐의 용접 잔류응력에 미치는 영향 (Effect of Normal Operating Condition Analysis Method for Weld Residual Stress of CRDM Nozzle in Reactor Pressure Vessel)

  • 남현석;배홍열;오창영;김지수;김윤재
    • 대한기계학회논문집A
    • /
    • 제37권9호
    • /
    • pp.1159-1168
    • /
    • 2013
  • 가압형 경수로 원자로의 압력용기 상부헤드 관통노즐 J-groove 용접부 주변에서 일차수응력부식균열(PWSCC)로 인한 냉각수 누설사례가 발생하고 있다. 본 연구에서는 PWSCC 의 주요 원인 중 하나인 용접 잔류응력을 유한요소 해석을 이용해 평가하고 원자력 발전소의 정상가동 조건을 해석에 반영하는 방법이 용접잔류응력 분포에 미치는 영향에 대한 분석을 수행하였다. 또한 반복되는 원자력 발전소의 가동 주기가 용접잔류응력 분포에 미치는 영향을 확인하여 정상가동조건에서의 정확한 용접 잔류응력을 예측할 수 있는 방법을 분석하였다.

유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석 (Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method)

  • 양동열;김한경;이항수;김경웅
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.873-882
    • /
    • 1992
  • 본 연구에서는 축대칭 형상의 하이드로 미케니칼 디프드로잉 공정을 강소성 유한요소법으로 해석하는 것이다. 본 논문에서는 Fig.1에서 보이는 바와 같은 경우 에 대하여 평두 펀치(flat headed punch)를 사용한 공정을 강소성 유한요소법으로 해 석하였으며 펀치 행정에 따른 챔버내의 압력 및 플랜지부의 압력분포를 구하였다. 접촉부의 처리는 플랜지부의 압력분포를 구하였다. 접촉부의 처리는 Yang등이 제안 한 방법을 적용하였다. 이론해석의 타당성을 알아보기 위하여 금형을 설계, 제작하 고 실험을 수행하여 결과를 비교 검토하였다.

Parallel Process System and its Application to Steam Generator Structural Analysis

  • Chang Yoon-Suk;Ko Han-Ok;Choi Jae-Boong;Kim Young-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.2007-2015
    • /
    • 2005
  • A large-scale analysis to evaluate complex material and structural behaviors is one of interesting topic in diverse engineering and scientific fields. Also, the utilization of massively parallel processors has been a recent trend of high performance computing. The objective of this paper is to introduce a parallel process system which consists of general purpose finite element analysis solver as well as parallelized PC cluster. The later was constructed using eight processing elements and the former was developed adopting both hierarchical domain decomposition method and balancing domain decomposition method. Then, to verify the efficiency of the established system, it was applied for structural analysis of steam generator in nuclear power plant. Since the prototypal evaluation results agreed well to the corresponding reference solutions it is believed that, after reinforcement of PC cluster by increasing number of processing elements, the promising parallel process system can be utilized as a useful tool for advanced structural integrity evaluation.