• Title/Summary/Keyword: mechanical alloying/milling

Search Result 167, Processing Time 0.036 seconds

Structural and Magnetic Properties of Fe50Cr50 Alloys Prepared by Mechanical Alloying Method

  • Yang, Dong-Seok;Park, Ji-Yeon;Yoo, Yong-Goo;Kim, Kyeong-Sup;Yu, Seong-Cho
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.108-111
    • /
    • 2010
  • Fe50Cr50 metastable alloys were prepared by the mechanical alloying method with milling periods of 1, 2, 4, 6, 12 and 24 hours, respectively. The structural evolution was analyzed by the extended x-ray absorption fine structure (EXAFS). In this work, the EXAFS analysis provided the local structural information around Fe central atom. The saturation magnetization was also measured by VSM. The magnetization decreased as the process mechanical alloying progressed. The magnetic property was related to the local structural variation as a function of processing time. The analysis showed that the diffusion Cr atoms into Fe clusters caused the reduction of magnetization. EXAFS analysis exhibited that the local ordering of magnetic atoms caused the magnetic ordering. Also, EXAFS analysis showed that the long range order of Fe atoms was destroyed completely in 24 hour milling.

Solid State Reduction of Haematite by Mechanical Alloying Process (기계적 합금화법에 의한 헤마타이트의 고상환원)

  • 이충효;홍대석;이만승;권영순
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2002
  • The efects of mechanical aloying conditions and the type of reducing agent on the solid state reductionof haematite $Fe_2O_3$ have been investigated at room temperature. Aluminium titanium zinc and copper were used as reducing agent. Nanocomposites of metal-oxide in which oxide particles with nano size were dispersed in Fe matrix were obtained by mechanical alloying of $Fe_2O_3$ with aluminium and titanium respectively However the reduction of $Fe_2O_3$ by coppe was not occurred Composite materials of iron with $Al_2O_3$ and $TiO_2$ were obtained from the system of $Fe_2O_3-Al$ and $Fe_2O_3-Ti$ after ball milling for 20 hrs and 30 hrs respectively. And the system of $Fe_2O_3-Zn$ resulted in the formationof FeO with ZnO after ball milling of 120 hrs. The final grain sizes of iron estimated by X-ray diffraction line-width measurement were in the ranges of 24~33 nm.

Effect of Milling Medium Materials on Mechanical Alloying of Mo-65.8at%Si Powder Mixture (Mo-65.8at%Si 혼합분말의 기계적 합금화에 미치는 밀링매체 재료의 영향)

  • 박상보
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.179-187
    • /
    • 1997
  • Milling media of steel and zirconia were used to produce $MoSi_2$ by mechanical alloying (MA) of Mo and Si powders. The effect of milling media on MA of Mo-65.8at%Si powder mixture has been investigated by SEM, XRD, DTh and in-situ thermal analysis. The powders mechanically alloyed by milling medium of steel for 8 hours showed the structure of fine mixture of Mo and Si, and those mechanically alloyed by milling medium of zirconia for longer milling time showed the structure of fine mixture of Mo and Si. The tetragonal $\alpha$-$MoSi_2$ Phase and the tetragonal $Mo_5Si_3$ phase appeared with small Mo peaks in the powders milled by milling medium of steel for 4 and 8 hours. The $\alpha$-$MoSi_2$ phase and the hexagonal $\beta$-$MoSi_2$ phase were formed after longer milling time. The $\alpha$-$MoSi_2$ phase appeared with large Mo peaks in the powders milled by milling medium of zirconia for 4 hours. The phases, $\alpha$-$MoSi_2$ and $\beta$-$MoSi_2$. were formed in the powders milled for longer milling time. DTA and annealing results showed that Mo and Si were transformed into $\alpha$-$MoSi_2$ and $Mo_5Si_3$, while $\beta$-$MoSi_2$ into $\alpha$-$MoSi_2$. In-situ thermal analysis results demonstrated that there were a sudden temperature rise at 212 min and a gradual increase in temperature in case of milling media of steel and zirconia, respectively. The results indicate that MA can be influenced by materials of milling medium which can give either impact energy on powders or thermal energy accumulated in vial.

  • PDF

Corrosion Behavior and Microstructural Evolution of Magnesium Powder with Milling Time Prepared by Mechanical Milling (기계적 밀링법으로 제조된 마그네슘 분말의 밀링시간에 따른 미세구조 변화와 부식거동)

  • Ahn, Jin Woo;Hwang, Dae Youn;Kim, Gyeung-ho;Kim, Hye-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.454-461
    • /
    • 2011
  • In this study, the relationship between corrosion resistance and microstructural characteristics such as grain size reduction, preferred orientation, and homogenous distribution of elements and impurity by mechanical milling of magnesium powder was investigated. Mechanical milling of pure magnesium powder exhibited a complex path to grain refinement and growth together with preferred orientation reversal with milling time. It was also found that anisotropic formation of dislocation on the basal plane of magnesium was initially the dominant mechanism for grain size reduction. After 60 hrs of milling, grain coarsening was observed and interpreted as a result of the strain relaxation process through recrystallization. In spite of the finer grain size and strong (002) texture developed in the sample prepared by spark plasma sintering at $500^{\circ}C$ for 5 min after mechanical milling for 2hrs, the sample showed a higher corrosion rate. The results from this study will be helpful for better understanding of the controlling factor for corrosion resistance and behaviors of mechanical milled magnesium powders.

Influence of milling atmosphere on thermoelectric properties of p-type Bi-Sb-Te based alloys by mechanical alloying

  • Yoon, Suk-min;Nagarjuna, Cheenepalli;Shin, Dong-won;Lee, Chul-hee;Madavali, Babu;Hong, Soon-jik;Lee, Kap-ho
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.357-363
    • /
    • 2017
  • In this study, Bi-Sb-Te thermoelectric materials are produced by mechanical alloying (MA) and spark plasma sintering (SPS). To examine the influence of the milling atmosphere on the microstructure and thermo-electric (TE) properties, a p-type Bi-Sb-Te composite powder is mechanically alloyed in the presence of argon and air atmospheres. The oxygen content increases to 55% when the powder is milled in the air atmosphere, compared with argon. All grains are similar in size and uniformly, distributed in both atmospheric sintered samples. The Seebeck coefficient is higher, while the electrical conductivity is lower in the MA (Air) sample due to a low carrier concentration compared to the MA (Ar) sintered sample. The maximum figure of merit (ZT) is 0.91 and 0.82 at 350 K for the MA (Ar) and MA (Air) sintered samples, respectively. The slight enhancement in the ZT value is due to the decrease in the oxygen content during the MA (Ar) process. Moreover, the combination of mechanical alloying and SPS process shows a higher hardness and density values for the sintered samples.

A Study on Synthesis of Ni-Ti-B Alloy by Mechanical Alloying from Elemental Component Powder

  • Kim, Jung Geun;Park, Yong Ho
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.202-206
    • /
    • 2016
  • A Ni-Ti-B alloy powder prepared by mechanical alloying (MA) of individual Ni, Ti, and B components is examined with the aim of elucidating the phase transitions and crystallization during heat treatment. Ti and B atoms penetrating into the Ni lattice result in a Ni (Ti, B) solid solution and an amorphous phase. Differential thermal analysis (DTA) reveals peaks related to the decomposition of the metastable Ni (Ti, B) solid solution and the separation of equilibrium $Ni_3Ti$, $TiB_2$, and ${\tau}-Ni_20Ti_3B_6$ phases. The exothermal effects in the DTA curves move to lower temperatures with increasing milling time. The formation of a $TiB_2$ phase by annealing indicates that the mechanochemical reaction of the Ni-Ti-B alloy does not comply with the alloy composition in the ternary phase diagram, and Ti-B bonds are found to be more preferable than Ni-B bonds.

Thermal Stability of Amorphous Ti-Cu-Ni-Sn Prepared by Mechanical Alloying

  • Oanha, N.T.H.;Choi, P.P.;Kim, J.S.;Kim, J.C.;Kwone, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.953-954
    • /
    • 2006
  • Ti-Cu-Ni-Sn quaternary amorphous alloys of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$ composition were prepared by mechanical alloying in a planetary high-energy ball-mill (AGO-2). The amorphization of all three alloys was found to set in after milling at 300rpm speed for 2h. A complete amorphization was observed for $Ti_{50}Cu_{32}Ni_{15}Sn_3$ and $Ti_{50}Cu_{25}Ni_{20}Sn_5$ after 30h and 20h of milling, respectively. Differential scanning calorimetry analyses revealed that the thermal stability increased in the order of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$.

  • PDF

Prediction the Phase Transformation Time of Binary Alloy System by calculating the Input Energy of Mechanical Alloying (기계적 합금화 투입에너지 계산에 의한 이원합금계의 상변태 시간 예측)

  • Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.107-111
    • /
    • 2019
  • The activation energy to create a phase transformation or for the reaction to move to the next stage in the milling process can be calculated from the slop of the DSC plot, obtained at the various heating rates for mechanically activated Al-Ni alloy systems by using Kissinger's equation. The mechanically activated material has been called "the driven material" as it creates new phases or intermetallic compounds of AlNi in Al-Ni alloy systems. The reaction time for phase transformation by milling can be calculated using the activation energy obtained from the above mentioned method and from the real required energy. The real required energy (activation energy) could be calculated by subtracting the loss energy from the total input energy (calculated input energy from electric motor). The loss energy and real required energy divided by the reaction time are considered the "metabolic energy" and "the effective input energy", respectively. The milling time for phase transformation at other Al-Co alloy systems from the calculated data of Al-Ni systems can be predicted accordingly.

Mechanically Driven Decomposition of Intermetallics

  • Kwon, Young-Soon;Kim, Hyun-Sik;Gerasimov, Konstantin B.
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.422-432
    • /
    • 2002
  • Mechanically driven decomposition of intermetallics during mechanical milling(MM 1 was investigated. This process for Fe-Ce and Fe-Sn system was studied using conventional XRD, DSC, magnetization and alternative current susceptibility measurements. Mechanical alloying and milling form products of the following composition (in sequence of increasing Gecontent): $\alpha$(${\alpha}_1$) bcc solid solution, $\alpha$+$\beta$-phase ($Fe_{2-x}Ge$), $\beta$-phase, $\beta$+FeGe(B20), FeGE(B20), FeGe(B20)+$FeGe_2$,$FeGe_2$,$FeGe_2$+Ge, Ge. Incongruently melting intermetallics $Fe_6Ge_5$ and $Fe_2Ge_3$ decompose under milling. $Fe_6Ge_5$ produces mixture of $\hat{a}$-phase and FeGe(B20), $Fe_2Ge_3$ produces mixture of FeGe(B20) and $FeGe_2$ phases. These facts are in good agreement with the model that implies local melting as a mechanism of new phase for-mation during medchanical alloying. Stability of FeGe(B20) phase, which is also incongruently melting compound, is explained as a result of highest density of this phase in Fe-Ge system. Under mechanical milling (MM) in planetary ball mill, FeSn intermetallic decomposes with formation $Fe_5Sn_3$ and $FeSn_2$ phases, which have the biggest density among the phases of Fe-Sn system. If decomposition degree of FeSn is relatively small(<60%), milled powder shows superparamagnetic behavior at room temperature. For this case, magnetization curves can be fitted by superposition of two Langevin functions. particle sizes for ferromagnetic $Fe_5Sn_3$ phase determined from fitting parameters are in good agreement with crystalline sizes determined from XRD data and remiain approximately chageless during MM. The decomposition of FeSn is attributed to the effects of local temperature and local pressure produced by ball collisions.