• Title/Summary/Keyword: measuring walking

Search Result 144, Processing Time 0.025 seconds

Human Motion Recognition using Fuzzy Inference System (인체동작구분 퍼지추론시스템)

  • Jin, Gye-Hwan;Lee, Sang-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.722-727
    • /
    • 2009
  • The technology of distinguishing human motion states is required in the areas of measuring and analyzing biosignals changing according to physical activities, diagnosing sleep disorder, screening the effect of treatment, examining chronic patients' kinetic state, prescribing exercise therapy, etc. The present study implemented a fuzzy inference system based on fuzzy rules that distinguish human motion states (tying, sitting, walking, and running) by acquiring and processing data of LAA, TAA, L-MAD, and T-MAD using ADXL202AE of Analog Devices embedded in an armband. The membership degree and fuzzy rules in each area of input (LAA, TAA, L-MAD, and T-MAD) and output (tying, sitting, walking, and running) data used here were determined using numeric data obtained from experiment. In the results of analyzing data for simulation generated in order of tying$\rightarrow$walking$\rightarrow$running$\rightarrow$tying, the sorting rate for motion states tying, sitting, walking, and running was 100% for each motion.

Development of FSR Sensor Suits Controlling Walking Assist System for Paraplegic Patients (하반신 마비환자의 보행보조시스템 제어를 위한 저항 센서 슈트 개발)

  • Jang, E.H.;Chi, S.Y.;Lee, J.Y.;Cho, Y.J.;Chun, B.T.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.269-274
    • /
    • 2010
  • The purpose of this study was to develop the FSR sensor suit that controls walking assist device for paraplegic patients. The FSR sensor suit was to detect user's intent and patterns for walking by measuring pressure on the palm and the sole of user's foot. It consisted of four modules: sensing pressure from palm, changing modes and detecting pressure on the palm/at the wrist, sensing pressure from the soles of user's foot, and host module that transmit FSR data obtained from sensing modules to PC. Sensing modules were connected to sensing pads which detect analog signals obtained from the palm or the sole of foot. These collect signals from the target regions, convert analog signals into digital signals, and transmit the final signals to host module via zigbee modules. Finally, host modules transmit the signals to host PC via zigbee modules. The study findings showed that forces measured at the palm when using a stick reflected user's intent to walk and forces at the sole of the user's foot revealed signals detecting walking state.

Analysis of Biomechanical Effect of the Subtalar Sling Ankle Taping (거골하 관절 현수 테이핑의 생체 역학적 효과 분석)

  • Choi, Mun-Suk;Jeon, Hye-Seon;Kim, Young-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.135-144
    • /
    • 2007
  • The purpose of this study was to identify the effect of the subtalar sling ankle taping, by measuring changes in peak plantar pressure and subtalar angle during jump landing and walking in healthy subjects with subtalar sling ankle taping applied of the ankle joint. Fifty healthy subjects(8 males and 7 female, aged 22 to 25) were randomly divided into a participated in this study. They were free of musculoskeletal injury and neurologic deficit in lower extremity. The subjects were asked to perform 5M walking and single leg jump landing by under the guidance of physical therapists. Subtalar motions were typically measured as the angle made between the posterior aspect of the calcaneous and the posterior aspect of the lower leg during walking with taping or not. This measurement were made using a video system (30Hz sampling rate, rectified 60 Hz sampling rate). At the same time, peak lateral and vertical pressure were investigated using pressure distribution platforms(MatScan system) under foot during walking and single leg jump landing with taping or not. Statistical analysis was done by paired t-test and intraclass correlation coefficient [ICC(3.1)], using software SPSS. We have recently demonstrated significantly altered patterns of subtalr joint and peak plantar pressure when applied subtalar sling ankle taping(p<.05). Inversion angle of subtalar joint significantly decreased with taping(p<.05). The result suggest that pressure patterns observed in subjects are likely to result due to significant decrease in stress on ankle joint structures during jump landing and walking. Also, the result that the subtalar sling ankle taping procedure provides greater restiction of motion associated with ankle inversion. However, this study involved asymptomatic subjects without history of ankle inversion injury, further research is needed to assess the motion restraining effect of the subtalar sling ankle taping in subjects with lateral ankle instability.

Walking path design considering with Slope for Mountain Terrain Open space

  • Seul-ki Kang;Ju-won Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.103-111
    • /
    • 2023
  • Mountains area, especially walking in open space is important for special active field which is based on mountain terrain. Recent research on pedestrian-path includes elements about pedestrian and various environment by analyzing network, but it is mainly focusing on limited space except for data-poor terrain like a mountain terrain. This paper proposes an architecture to generate walking path considering the slope for mountain terrain open space through virtual network made of mesh. This architecture shows that it reflects real terrain more effective when measuring distance using slope and is possible to generate mountain walking path using open space unlike other existing services, and is verified through the test. The proposed architecture is expected to utilize for pedestrian-path generation way considering mountain terrain open space in case of distress, mountain rescue and tactical training and so on.

Development of an Intelligent Legged Walking Rehabilitation Robot (지능적 족형 보행 재활 보조 로봇의 개발)

  • Kim, Hyun;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.825-837
    • /
    • 2017
  • This paper describes a novel type of a walking rehabilitation robot that applies robot technologies to crutches used by patients with walking difficulties in the lower body. The primary features of the developed robot are divided into three parts. First, the developed robot is worn on the patient's chest, as opposed to the conventional elbow crutch that is attached to the forearm; hence, it can effectively disperse the patient's weight throughout the width of the chest, and eliminate the concentrated load at the elbow. Furthermore, it allows free arm motion during walking. Second, the developed robot can recognize the walking intention of the patient from the magnitude and direction of the ground reactive forces. This is done using three-axis force sensors attached to the feet of the robot. Third, the robot can perform a stair walking function, which can change vertical movement trajectories in order to step up and down a single stair according to the floor height. Consequently, we experimentally showed that the developed robot can effectively perform walking rehabilitation assistance by perceiving the walking intention of the patient. Moreover we quantitatively verified muscle power assistance by measuring the electromyography (EMG) signals of the muscles of the lower limb.

The Effect of Weight-support Treadmill Training on the Balance and Activity of Daily Living of Children with Spastic Diplegia

  • Choi, Hyun-Jin;Nam, Ki-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.6
    • /
    • pp.398-404
    • /
    • 2012
  • Purpose: This is designed to study the effect of weight-support walking training through motor learning on motor functions of children with cerebral palsy, in particular their activity of daily living and balance. Methods: Thirteen children with spastic cerebral palsy, at gross motor function classification system (GMFCS) levels III~IV, underwent treadmill walking training. It used principles of weight support, 4 times a week for 7 weeks, 10 minutes at a time, before and after neurodevelopmental physical therapy. Everyday functions were measured using Functional Independence Measure for Children (Wee-FIM). The ability to keep their balance was measured using electronic measuring equipment from good balance system and the assessment was made before and after the experiment. Results: There were significant differences (p<0.05) between pre and post experiment levels of functional independence in everyday life, in self-care activities, mobility, locomotion and social cognition. With regard to changes in standing balance, there were significant differences before and after the experiment (p<0.05) in GMFCS level III. There was a reduction in the agitation velocity in the x- and y-axes which measures the left-to-right shaking; in GMFCS level IV, velocity moment was reduced. Conclusion: Walking training using a treadmill can help improve the everyday activity and balance in children with spastic cerebral palsy. It can also be served as a useful purpose as a method of intervention in pediatric care.

Improvement of Activity Recognition Based on Learning Model of AI and Wearable Motion Sensors (웨어러블 동작센서와 인공지능 학습모델 기반에서 행동인지의 개선)

  • Ahn, Junguk;Kang, Un Gu;Lee, Young Ho;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.982-990
    • /
    • 2018
  • In recent years, many wearable devices and mobile apps related to life care have been developed, and a service for measuring the movement during walking and showing the amount of exercise has been provided. However, they do not measure walking in detail, so there may be errors in the total calorie consumption. If the user's behavior is measured by a multi-axis sensor and learned by a machine learning algorithm to recognize the kind of behavior, the detailed operation of walking can be autonomously distinguished and the total calorie consumption can be calculated more than the conventional method. In order to verify this, we measured activities and created a model using a machine learning algorithm. As a result of the comparison experiment, it was confirmed that the average accuracy was 12.5% or more higher than that of the conventional method. Also, in the measurement of the momentum, the calorie consumption accuracy is more than 49.53% than that of the conventional method. If the activity recognition is performed using the wearable device and the machine learning algorithm, the accuracy can be improved and the energy consumption calculation accuracy can be improved.

Dynamic Gait embody using angular acceleration for a Walking Robot (각가속도를 이용한 이족 로봇의 동적 걸음새 구현)

  • Park, Jae-Mun;Park, Seung-Yub;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • In this paper, we embodied posture-stabilization and dynamic gait in a walking robot. 10 RC servo motors are used to operate joints. And the joints have enough moving ranges suitable in any walking pattern. Each joint trajectory is generated by cubic spline interpolation method and the stability of the trajectory is verified by using Zero Moment Point from the robot modeling. To avoid complex structure and expression, Zero Moment Point of the biped robot used angular acceleration is suggested. To measure the stability of the biped robot, Tilt sensor and gyro sensor are used. Finally, Personal Computer is used computer monitoring and data processing. Most of computation, such as 10 RC servo motor control, joint trajectory generating, ZMP compensation, sense measuring, etc, was used Digital Signal Processor.

  • PDF

The Application of Foot Orthotic to Chronic Pain Patient with Pelvic Obliquity : 4 Cases Report (골반 경사가 동반된 만성 통증 환자에게 족부 보조기를 적용한 증례 4례)

  • Ahn, Hee-Bin;Kim, Soon-Joong;Jeong, Su-Hyeon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.309-318
    • /
    • 2011
  • Objectives : To evaluate the effect of foot orthotic in patient with chronic pain and pelvic obliquity in standing. Methods : Four cases of functional spinal scoliosis, were investigated for the changes in the calcaneal stance position angle, pelvic height, pelvic angle, Cobb's angle and walking pattern. Standing full spine X-ray for measuring the pelvic height, pelvic angle, Cobb's angle were checked before and after application of foot orthosis. The foot orthosis was composed of polyprophylen and chamude cover. Results : 1. There was no change in resting calcaneal stance position. 2. Difference of pelvic height and pelvic angle was reduced after application of a foot orthosis. 3. Cobb's angle in 2 cases was reduced after application of a foot orthosis. 4. Walking balance was improved. 5. Visual analogue scale was decreased. Conclusions : The study showed that foot orthosis seemed to be effective for chronic pain, spinal curve, pelvic obliquity and walking balance.

Juvenile, Adolescent Idiopathic Scoliosis Treated with Chuna Manipulation and Foot Orthosis Treatment : Four Clinical Cases Report (추나 치료와 족부 보조기를 병행한 연소기, 청소년기 특발성 척추측만증 치험 4례)

  • Park, Jung-Woo;Kim, Soon-Joong;Jeong, Su-Hyeon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.23 no.1
    • /
    • pp.65-75
    • /
    • 2013
  • The objective of this study is to report the effect of Chuna manipulation and foot orthosis treatment on juvenile, adolescent idiopathic scoliosis by observing four clinical case studies. Pre-and post-treatment, we investigated the changes in Cobb's angle, pelvic height and walking pattern by using the standing full spine X-ray. After application of a Chuna manipulation and foot orthosis treatment, Cobb's angle was reduced in 4 cases. Difference of pelvic height was reduced in 3 cases, and other 1 case was increased rather. And walking balance was improved in the case of measuring walking balance pattern. This study showed that Chuna manipulation and foot orthosis treatment has meaningful effect on juvenile, adolescent idiopathic scoliosis and more researches should be followed.