• Title/Summary/Keyword: measuring impedance

Search Result 322, Processing Time 0.032 seconds

Measurement of the acoustic impedance by using beamforming method in a free-field (자유 음장에서 빔형성 방법을 이용한 음향 임피던스 측정)

  • Sun, Jong-Cheon;Shin, Chang-Woo;Baek, Sun-Gwon;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.969-974
    • /
    • 2007
  • In this paper, a beamforming technique is introduced to measure the acoustic impedance at both normal and oblique incidence in a free field. The acoustic impedance is obtained by separating incident and reflected signals using the adaptive nulling method which is one of the various beamforming algorithms. To obtain better results, pressure vector commonly used in array signal processing is replaced with the transfer function vector between each microphone and the white Gaussian noise is suppressed by a wavelet shrinkage technique. The experiments conducted in a semi-anechoic room show that the proposed method is efficient and accurate in measuring the acoustic impedance of sound absorbing materials under a free field condition.

  • PDF

Skin Impedance Measurements Using the Characteristics of Compound Electrode (복합형 전극의 특성을 이용한 피부의 전기저항 측정에 관한 연구)

  • 우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.47-54
    • /
    • 1992
  • We studied the characteristics of the compound electrode and found that the compound electrode provides the four-electrode method in a compact form. We developed a new method of measuring the skin impedance using simple electrodes at low frequencies. At high frequencies where the effect of internal tissue impedance is not negligible, we used the compensation method using compound electrodes since they measure the voltage right under the skin. At 50 kHz, we measured the real part of the skin impedance of less than $80{\Omega}$ on the thorax. We propose a simple instrument which can measure accurate skin impedance at various frequencies.

  • PDF

Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

  • Take, S.;Yoshinaga, S.;Yanagita, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.259-264
    • /
    • 2016
  • With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from $800^{\circ}C$ to $350^{\circ}C$) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

Ground Impedance and Frequency Response Characteristics of Large-scale Ground Rods (대형 봉상 접지전극의 접지임피던스와 주파수 응답특성)

  • Lee, Bok-Hee;Eom, Ju-Hong;Kim, Tai-Doo;Chung, Dong-Chul;Kil, Hyeong-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1791-1793
    • /
    • 2003
  • In order to analyze the dynamic characteristics of ground impedance in large grounding system for lightning and surge protections, a novel method for measuring the ground impedance as a function of frequency was proposed. The experiments were carried out in the grounding system composed of ground rods and mesh grids. The test current was injected by the variable frequency inverter whose frequency is linearly controlled in the range of $5{\sim}500$kHz. The ground impedance and frequency response of the grounding system were mainly caused by the inductive current flowing through grounding conductors over the frequency of 2002. In the combined grounding system of rods and mesh grids, inductive component of ground impedance was significantly decreased. It was fumed out that the grounding system is effective for the surge protection.

  • PDF

Acoustical Properties of Polyester Sound Absorbing Materials (폴리에스테르 흡음재의 음향특성)

  • 주경민;용호택;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1347-1352
    • /
    • 2001
  • In this study, the acoustic properties of polyester sound absorbing materials with three different bulk densities were investigated by calculating and measuring the acoustic parameters in terms of characteristic impedance, propagation constant, and absorption coefficient. For the calculations, Delany and Bazley's empirical equation was used together with the experimentally obtained specific flow resistivities under steady flow conditions. For the experimental measurements, the well-known two-thickness method was accessed. The experimentally measured values of characteristic impedance and propagation constant were generally agreed well with the corresponding calculated values. Based on the comparisons between the calculations and measurements, it was found that the magnitude of the absorption coefficient was closely related to the characteristic impedance and the real part of the propagation constant. Especially, the maximum magnitude of the absorption coefficient was depended upon the imaginary part of the propagation constant indicating the phase change of the propagation constant.

  • PDF

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

A Study on the circuit design and measurement method for the measurement of active points on skin (피부 활성점 측정을 위한 회로설계 및 측정방법연구)

  • Kim, Min Soo;Cho, Young Chang
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.713-718
    • /
    • 2020
  • The method of measuring skin active points is a technique for obtaining a lot of biometric information because it is measured with convenience, low cost and non-invasive methods. In this paper, we used in a three electrode measure method that has the advantage of measuring the impedance of the APs under the skin. The impedance measuring method is well illustrated by a simple model of an equivalent electrical circuit that correlates well with experimental results. The characteristic frequencies of APs are about 15-30HZ higher than that of surrounding skin and the values of measured reactance are about 35-77KΩ smaller. This technology analyzed accurately and objectively the reactance and characteristic frequency of APs and the surrounding skin using a non-invasive measuring system.

The Effect of Mutual Coupling between Current and Potential Test Leads on Ground Impedance (전류 및 전위 측정선간 상호유도가 접지임피던스에 미치는 영향)

  • Eom, Ju-Hong;Cho, Sung-Chul;Lee, Tae-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1223-1228
    • /
    • 2008
  • While a high frequency source is used for measuring the ground impedance, there are several factors having an effect on the measured value. A primary factor of the measurement error is the ac mutual coupling between current and potential test leads. The mutual coupling causes the test current to induce a voltage into the potential test lead that adds to the actual ground potential rise and produces a significant measurement error as the length of the test leads paralleled is prolonged. In order to avoid the mutual coupling, it is recommended that the ground impedance be measured by angled arrangement of test leads. The mutual impedance due to the inductive coupling with an angle of $90^{\circ}$ was calculated at $0^{\circ}$ by Campbell/Foster Method. With an angle of $180^{\circ}$, the mutual impedance was calculated large value enough to introduce a fairly large margin of error, however, the measured value of ground impedance was close to the value at $90^{\circ}$.

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • Jang, Hae-Gyu;Kim, Dae-Gyeong;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

Void Fraction Measurement by the Improved Multi-Channel Impedance Void Meter (개량된 다채널 임피던스형 측정기에 의한 기포율의 측정)

  • Song, Cheol-Hwa;Jeong, Mun-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.384-398
    • /
    • 1996
  • An improved multi-channel Impedance Void Meter (IVM) is developed to measure an area-averaged void fraction. It consists of a main sensor, a reference sensor and a signal processor. The sensor was designed to be flush-mounted to the inner wall of the test section to avoid the flow disturbances. Guard electrodes are used to obtain evenly distributed electrical field in a measuring volume. A reference sensor is also installed to eliminate the drift in void signal caused by the changes in electrical properties of working fluid. The signal processor with three channels is specially designed so as to minimize the inherent error due to the phase difference between channels. As an example of applications, the mean and fluctuating components of void fraction are measured for bubbly and slug flow regime, and it is shown that IVM has good dynamic resolution which is required to investigate the structural developments of bubbly flow and the propagation of void waves in a flow channel.