• Title/Summary/Keyword: measuring impedance

Search Result 322, Processing Time 0.022 seconds

Modification of the experimental method for measuring acoustic impedance of perforated elements with grazing flow (스치는 유동이 존재하는 원형 천공의 음향 임피던스 측정 방법 개선)

  • Lee Seong-Hyun;Ih Jeong-Guon;Peat Keith
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.297-300
    • /
    • 2004
  • Perforated elements are extensively used in mufflers for the intake and exhaust systems of various fluid machines. Perforated elements are usually exposed to grazing flow or cross flow. For analyzing performances of mufflers, the impedance of perforated elements with mean flow is very important. The impedance of perforates under both conditions are measured with different experimental setups. Even if there is no flow, the preceding experimental method for grazing flow shows different values with both theoretical ones and measured under cross flow setup. Using high-order analysis considering phase differences, the experimental method for grazing flow can be modified. The acoustical impedance of perforated impedance contains interaction effects between orifices. After correcting these effects, the measured impedance with grazing flow setup show similar results with both theoretical impedance and measured ones under cross flow setup.

  • PDF

Accurate Power Sharing in Proportion for Parallel Connected Inverters by Reconstructing Inverter Output Impedance

  • Huang, Shengli;Luo, Jianguo
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1751-1759
    • /
    • 2018
  • This paper presents parallel-connected inverters to achieve accurate proportional power sharing. Due to line impedance mismatch, reactive power cannot be distributed proportionally when using the conventional $P-{\omega}$ and $\mathcal{Q}-E$ droop. In order to realize reactive proportional power sharing, the ratio of the droop coefficients should be inversely proportional to their power-sharing ratios. Meanwhile, the ratio of the line impedance should be inversely proportional to the desired power-sharing ratio, which is very difficult to be met in practice. In order to deal with this issue, a practical control strategy is presented. By measuring the PCC voltage and using the virtual impedance, the output impedance of individual inverters is reconstructed to counteract the line impedance effect. In order to guarantee system stability, a low pass filter is designed to suppress the bandwidth of the line compensation. Finally, the simulation and experimental results are given to verify the effectiveness of the proposed control strategy.

A Study on sorting out base metal using eddy current sensor (와전류 센서를 이용한 금속 모재 선별에 관한 연구)

  • Lee G.S.;Kim T.O.;Kim H.Y.;Ahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1788-1792
    • /
    • 2005
  • Eddy current sensor is representative instrument measuring gap to base metal and sensing trouble in base metal. The existing eddy current sensor works as measuring variance of sensor coil's inductance. But, sensor coil have phenomenon that not only inductance but also real resistance varies in real action. Conductivity and Permeability are main variable in sensor coil's varying impedance(inductance, real resistance). By searching relationship between conductivity-permeability and sensor coil's impedance, eddy current sensor gain advantage of elevation of accuracy, removal of alignment to each base metal, and continuous sensing to varying base metal.

  • PDF

Factors Affected the Accuracy of Lightning Current Measuring System (뇌격전류 측정의 정확도에 영향을 미치는 요인)

  • Lee, B.H.;Chang, K.C.;Kang, S.M.;Eom, J.H.;Jeong, K.J.;Sim, E.B.;Woo, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1674-1676
    • /
    • 2003
  • The factors affecting the accuracy of lightning current measuring system are figured out the materials and length of down-conductor, and impedance matching between grounding resistance and characteristic impedance of cable. The cable with the low characteristic impedance used to transfer the lightning current from the top of the tower is too long to measure the waveform of lightning current, exactly. Especially, the height of the tower can cause the change of front time and magnitude of lightning stroke current. Basically, in this experiment. It was found that the magnitude and rise time of the lightning current are extremely dependant in the length of down-conductor in lightning current measuring system.

  • PDF

Development of High Precision Impedance Measurement Systems in Specific Ranges Using a Microprocessor (마이크로프로세서를 이용한 특정 영역에서 고정밀 임피던스 측정 시스템 개발)

  • Ryu, Jae-Chun;Lee, Myung-Eui
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.316-321
    • /
    • 2019
  • In this paper, by applying the constant current principle we develop an impedance measurement system which can measure the high precision impedance of various electric materials by using microprocessor. This measurement system board has an interface device for acquiring digital data from an external device including an impedance measuring device, and system software is also developed by a firmware program executed on such an embedded board. It can measure the high precision impedance of a specific band with 1/32768 precision by using 15-bit ADC(analog to digital converter) and calculate it to the five digits to the right of the decimal point(fraction part). Data is transmitted through a USB interface of a general computer and a measuring device to manage digital data. An impedance measurement system equipped with a communication function capable of a more general and easy-to-use interface than other equipment is developed and verified.

The Comparison of Cardiac Outputs between Impedance Cardiography and Thermobilution Technique (임피던스 카디오그래피와 열희석법에 의한 심박출량의 비교)

  • 김덕원;이웅구
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.165-170
    • /
    • 1988
  • The purpose of this study was to prove the accuracy of impedance cardiography by measuring cardiac outputs of patients simultaneously by thermodilution method, and impedance cardiography developed in our department. The subjects were eight patients with mitral stenosis admitted to the cathete rization laboratory in Severance Hospital. The correlation coefficient was 0.895, which is thought quite high considering the fact that accuracy of cardiac outputs of patients with valvular diseases measured by both methods was known to be low.

  • PDF

A Study on the Acoustical Characteristics of the Absorbent Materials Using Two Microphones (두개의 마이크로폰을 이용한 흡음재의 음향특성 조사)

  • 정성수;황철호
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.225-231
    • /
    • 1996
  • A free field method using two microphones is used for measuring surface impedance and absorption coefficient of the absorbent materials. It is shown that this method can be performed in a large non-anechoic room. Precise values of the surface impedance can be obtained by changing the spaces between the two microphones. Comparison between experimental values of the surface impedance of the glass wool and the mineral wool and Miki's empirical model shows agreement.

  • PDF

A Study on Improvement of the Accuracy of SV Measurement obtained by Hand to Hand Impedance. (양손 임피던스법에 의한 SV 측정의 정확도 향상을 위한 연구)

  • Yoon, Chan-Sol;Yeom, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1251-1255
    • /
    • 2015
  • The purpose of this study is to measurement the cardiac output using hand to hand impedance method to provide convenience to user when measuring SV(stroke volume) with the use of ICG(Impedance Cardiography). We suggest the optimized modified formula, which can be applied when using impedance with the use of hand to hand Impedance. To verify this formula, a SV from transthoracic approach and hand to hand approach are compared for the 36 subjects, respectively. The acquired data was analyzed by using LabVIEW 8.6, analysis was implemented by SPSS 12.0. Fine difference was shown by individual. We showed that as a result of analyzing the ICG measurement value on thoracic and hand to hand, the correlation with SV was r=0.716, thereby having indicated the results of regression model in relatively high correlation.

Effects of Ac Mutual Coupling According to Location of Auxiliary Electrodes In Measuring the Ground Impedance of Vertically or Horizontally Buried Ground Electrode (수직 또는 수평으로 매설된 접지전극의 접지임피던스 측정시 보조전극 위치에 따른 전자유도의 영향)

  • Choi, Young-Chul;Choi, Jong-Hyuk;Lee, Bok-Hee;Jeon, Duk-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.86-92
    • /
    • 2009
  • In order to minimize ac mutual coupling, the auxiliary electrode are located at a right angle in measuring ground impedance. In case that the measurement space is limited, the alternative method is employed. At that time, it is necessary to investigate the measurement errors due to ac mutual coupling and earth mutual resistance in measuring the ground impedances. 'This paper presents the measurement accuracy according to the location of the current and potential auxiliary electrodes in measuring ground impedance of vertically or horizontally buried ground electrode. The measurement errors due to ac mutual coupling were evaluated Consequently, the effect of ac mutual coupling on the measurement accuracy for horizontally buried ground electrode is greater than that for vertically buried ground electrode. Measurement errors due to ac mutual coupling is the largest when the current and potential auxiliary electrodes are located in parallel. The 61.8[%] rule is inappropriate in measuring ground measurement. Theoretically, in case that the angle between the current and potential auxiliary electrodes is 90$[^{\circ}]$, there is no ac mutual coupling. If it is not possible to route the current and potential auxiliary electrodes at a right angle with limitation of measurement space, the location of these electrodes with an obtuse angle is preferred to that with an acute angle in reducing the measurement errors due to ac mutual coupling.

Crack Initiation and Temperature Variation Effects on Self-sensing Impedance Responses of FRCCs (FRCCs의 자가센싱 임피던스 응답에 미치는 균열 발생 및 온도 변화 영향성)

  • Kang, Myung-Soo;Kang, Man-Sung;Lee, Han Ju;Yim, Hong Jae;An, Yun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.69-74
    • /
    • 2018
  • Fiber-Reinforced Cementitious Composites (FRCCs) have electrical conductivity by inserting reinforced conductive fibers into a cementitious matrix. Such characteristic allows us to utilize FRCCs for crack monitoring of a structure by measuring electrical responses without sensor installation. However, the electrical responses are often sensitively altered by temperature variation as well as crack initiation. The temperature variation may disturb crack detection on the measured electrical responses. Moreover, as sensing probes for measuring electrical reponses increase, undesired contact noises are often augmented. In this paper, a self-sensing impedance circuit is specially designed for reducing the number of sensing probes. The crack initiation and temperature variation effects on the self-sensing impedance responses of FRCCs are experimentally investigated using the self-sensing impedance circuit. The experiment results reveal that the electrical impedance response are more sensitively changed due to temperature variation than crack initiation.