• Title/Summary/Keyword: measuring impedance

Search Result 322, Processing Time 0.024 seconds

Electrochemical Characteristics of Reforming Activated Carbon with Nitrogenous Functional Group for Electric Double Layer Capacitor (전기이중층 커패시터용 질소성 작용기를 이용한 개질 활성탄의 전기화학적 특성)

  • Yang, Jeong-Jin;Choi, Young-Joo;Kim, Han-Joo;Yuk, Young-Jae;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.65-69
    • /
    • 2013
  • In order to improve capacitance of activated carbon for electric double layer capacitors, peptide bond was induced on the surface of the activated carbon by urea. Urea induced activated carbon has been stabilized through carbonization. Electrochemical characteristics was observed by cyclic voltammetry for specific capacitance, electrochemical impedance spectroscope for measuring resistance and charge-discharge for testing the cyclic ability. In the result, specific capacitance is increased about 22.9% than the activated carbon. And it shows excellent cycle performance and decreasing resistance with the introduction of nitrogen functional groups.

Dual-Band Microstrip Antenna for ISM Band using Aperture Coupled Cross Patch (개구 결합된 십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나)

  • 박기동;정문숙;임영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.479-488
    • /
    • 2003
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4 GHz and 5.8 GHz using finite-difference time-domain method(FDTD). Cross patch 130 by aperture in the ground plane of microstrip line is proposed as radiation element of antenna which is 2 rectangular patch is overlapped. To design antenna, change of input impedance is examined by length change of aperture and stub. And center frequency and - 10 dB bandwidth are investigated by change of length and width in radiation element. Measured result about reflection loss confirm that agree well with simulation results of FDTD and IE3D. And 3 dB beam width, front to back ratio and maximum gain is presented by measuring radiation pattern of antenna in frequency 2.43 GHz and 5.79 GHz.

Preparation and Dielectric Properties of Ceramic(BNT)-Polymer(LCP) Composite (세라믹(BNT)-폴리머(LCP) 복합체 제조 및 유전특성)

  • Park, Myoung-Sung;Chun, Myoung-Pyo;Cho, Jung-Ho;Nam, Joong-Hee;Choi, Byung-Hyun;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.935-940
    • /
    • 2009
  • In this research, the composites (100-x)LCP-xBNT (x = 0, 10, 20, 30, 40 vol.%) were fabricated with thermoplastic LCP(Liquid Crystal Polymer) and BNT($BaNd_2Ti_4O_{12}$) which is a high frequency dielectric material. Their dielectric properties, mechanical strength and microstructure were investigated by Impedance analyser, Instron and SEM. In order to fabricate LCP-BNT composites, LCP resin was put into the twin screw type mixer($310^{\circ}C$), melted by keeping for 10 min. After that, BNT filler was dispersed with melted LCP resin for 15 min. in the mixer. For measuring the dielectric properties and mechanical strength, Composite specimens were made by pressing composite granule (LCP-BNT) with 7 ton in the mold at $310^{\circ}C$. With increasing the BNT content (0~40 vol.%) of the composite, Its dielectric constant increased, dielectric loss and flexural strength decreased. The dielectric constant and flexural strength of composites with 20~30 vol.% of BNT filler are 4.1~6.0 and 35~55 MPa respectively. BNT/LCP composite is the potential substrate material for the high frequency application.

A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes

  • Kim, Jung-Ae;Park, In-Soo;Seo, Ji-Hye;Lee, Jung-Joon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • The process parameter in optimized KOH alkali activation of soft carbon series coke material in high purity was set with DOE experiments design. The activated carbon was produced by performing the activation process based on the set process parameters. The specific surface area was measured and pore size was analyzed by $N_2$ absorption method for the produced activated carbon. The surface functional group was analyzed by Boehm method and metal impurities were analyzed by XRF method. The specific surface area was increased over 2,000 $m^2/g$ as the mixing ratio of activation agent increased. The micro pores in $5{\sim}15{\AA}$ and surface functional group under 0.4 meq/g were obtained. The contents of the metal impurity in activated carbon which is the factor for reducing the electrochemical characteristics was reduced less than 100 ppm through the cleansing process optimization. The electrochemical characteristics of activated carbon in 38.5 F/g and 26.6 F/cc were checked through the impedance measuring with cyclic voltammetry scan rate in 50~300 mV/s and frequency in 10 mHz ~100 kHz. The activated carbon was made in the optimized activation process conditions of activation time in 40 minutes, mixing ratio of activation agent in 4.5 : 1.0 and heat treatment temperature over $650^{\circ}C$.

Development of Miniaturized Textile Electrode for Measuring Heart Electric Activity (심장 전기활동 계측을 위한 소형 섬유전극 개발 및 특성 고찰)

  • Lee, Young-Jae;Lee, Jeong-Whan;Yang, Heui-Kyung;Lee, Joo-Hyeon;Kang, Da-Hye;Cho, Hyun-Seung;Ahn, Ihn-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1186-1193
    • /
    • 2009
  • Wearable ECG monitoring is regarded as one of the most essential part in the ubiquitous healthcare environment and subsequently day-life monitoring of a heart condition has been pursued especially for the elder people. However, there are many problems to accomplish this task such as; i) implementation of long-term monitoring device, ii) development of non-irritating electrode on skin and iii) stable signal acquisition. With these aims, we have focused on implementing a non-irritating electrode with an endurable monitoring device for day-life. To accomplish our tasks, we basically developed four different types of textile electrodes that are adapted by both shape and the composed material; flat or convex shape and Ag-conductive paste material or not. It turns out to be that a convex shape and Ag-paste textile electrode has the best performance in terms of both signal-to-noise ratio (SNR) and Impedance/Phase characteristics. Furthermore, ECG amplifier (35 ${\times}$ 35 mm) has developed to resolve the ECG signal and transfer the signal to desktop computing device or portable one by RF serial communication.

Electrochemical studies of nano-scale solid electrolyte powder prepared by chemical synthesis process (화학적합성법에 의한 나노 고체 전해질 분말 합성 및 전기화학적 평가)

  • Kim, Young-Mi;Shin, Yu-Cheol;Kim, Ho-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.295-298
    • /
    • 2009
  • Oxygen ionic conductors of CeScSZ electrolyte in SOFC unit cell are applied to anode and cathode as well as electrolyte to have the triple-phase-boundaries of electrochemical reaction, and it is required to decrease the sintering temperature of anode-supported electrolyte by the nanoscale of CeScSZ electrolyte powder. In this report, nanoscale CeScSZ electrolyte powder was synthesized by chemical synthesis method. The particle size, surface area and morphology of the powder were observed by SEM and BET. Thin film electrolyte of under $10{\mu}m$ was fabricated by tape casting using the synthesized CeScSZ electrolyte powder, and ionic conductivity and gas permeability of electrolyte film were evaluated. Finally the SOFC unit cell was fabricated using the anode-supported electrolyte prepared by a tape casting method and co-sintering, in which the active layer, measuring $20{\mu}m$, was introduced in the anode layer to provide a more efficient reaction. Electrochemical evaluations of the SOFC unit cell, including measurements such as power density and impedance, were performed and analyzed.

  • PDF

Research on Assessment Method of Deterioration Condition for Power Transformer Using Sweep Frequency Response Analyzer (주파수응답분석기를 이용한 전력용 변압기 열화상태 평가방법 연구)

  • Gil, Hyoung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.30-35
    • /
    • 2013
  • This paper describes the assessment method of deterioration condition for a power transformer using SFRA. Frequency Response Analysis(FRA) is a method to evaluate the mechanical and geometrical integrity of the core and windings within a power transformer by measuring the electrical transfer functions over a wide frequency range. SFRA is sweep frequency response analyzer for power transformer winding diagnosis. The FRA is a comparative method, that evaluates the transformer condition by comparing the obtained set of FRA results to reference results on the same, or a similar, unit. FRA techniques were widely used and much more sensitive than the traditional and internationally accepted method of impedance measurements, but that work was required on standardization and interpretation. In order to analyze the deterioration condition for power transformer, overvoltage test and mechanical distortion test were carried out. The deterioration condition for power transformer was evaluated by SFRA. It is intended to present the elemental technology of assessment method for power transformer using SFRA.

Anti-islanding Detection of Photovoltaic Inverter Based on Negative Sequence Voltage Injection to Grid (역상분 전압 주입을 이용한 태양광 인버터의 단독 운전 검출)

  • Kim, Byeong-Heon;Park, Yong-Soon;Sul, Seung-Ki;Kim, Woo-Chull;Lee, Hyun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.546-552
    • /
    • 2012
  • This paper presents an active anti-islanding detection method using negative sequence voltage injection to the grid through a three-phase photovoltaic inverters. Because islanding operation mode can cause a variety of problems, the islanding detection of grid-connected photovoltaic inverter is the mandatory feature. The islanding mode is detected by measuring the magnitude of negative sequence impedance calculated by the negative sequence voltage and current at the point of common coupling. Simulation and experimental test are performed to verify the effectiveness of the proposed method which can detect the islanding mode in the specified time. The test has been done in accordance with the condition on IEEE Std 929-2000.

Mode-Matching Analysis for Complex Antenna Factors of Circular Top-Hat EMI Monopole Antennas (모드 정합법에 의한 원판 부착형 EMI 모노폴 안테나의 복소 안테나 인자 해석)

  • 정운주;김기채
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1024-1029
    • /
    • 2003
  • This paper presents the complex antenna factor of a top-hat EMI monopole antenna for measuring time domain electromagnetic fields. The approach is facilitated by adding a artificial parallel ground plane above the monopole antenna. This allows use of cylindrical harmonic field expansions in each of three subregions enclosed by the two ground plane. The results show that the complex antenna factor of the top-hat monopole antenna does not diverge at low frequencies. When compared with a monopole antenna, the top-hat monopole antenna has broadband characteristics. In order to verify the availability of the mode-matching method, the input impedance of the antenna were compared with experiments.

Three Axis Isotropic Field Strength Measuring Antenna (3축 등방성 전계강도 측정 안테나)

  • Choi, Suk-Hwan;Kim, Dong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.879-885
    • /
    • 2014
  • In this paper, we designed and fabricated wideband 3-axis isotropic antenna for the Electro-Magnetic Fields(EMFs) measurement. Each part of proposed 3-axis antenna has isotropic characteristics and arbitrary axis of proposed 3-axis antenna could be selectable using RF switch. Also, a resistor was inserted in each axis of proposed 3-axis antenna for improving antenna gain and noise suppression characteristics, and port impedance of each dipole antenna were matched by balun. For the performance verification of antenna, GTEM Cell which generates standard electromagnetic field was used for the derivation of antenna factor and receiver sensitivity. As a result, fabricated 3-axis isotropic antenna has receiver sensitivity of 0.12~4.2 mV/m and typical VSWR of 3.3:1 within a wide operation frequency range from 0.03 MHz to 3 GHz.