• Title/Summary/Keyword: measurement settlement

Search Result 217, Processing Time 0.03 seconds

The Influence of the Direction of Applied Load(Compression and Uplift) and the Diameter of the Pile on the Pile Bearing Capacity (하중 작용 방향(압축과 인발)과 말뚝의 직경이 말뚝 지지력에 미치는 영향)

  • 이명환;윤성진
    • Geotechnical Engineering
    • /
    • v.7 no.3
    • /
    • pp.51-64
    • /
    • 1991
  • The reliable estimation of pile bearing capacity is essential for the improvement of the re- liability and the cost-effectiveness of the design. There have been numerous pile bearing capacity prediction methods proposed up to now, however, execpt for the estimation made from the result of the pile loading test, not one method is appropriate for the reliable prediction. Due to the considerable time and expenses required to carry out the pile loading test, the test has seldom been utilized. The development of Simple Pile Loading Test(SPLT) which utilizes the pile skin friction as the required reaction force to cause the pile tip settlement, provides a solution to perform more pile loading tests and consequently a more economical pile design is possible. The separate measurement of skin friction and tip resistance during the course of performing SPLT provides a better understanding of the pile behavior than the result of the conventional pile loading test where only the total resistance is measured. On the other hand, there are some points to be clarified in order to apply the test results of SPLT to practical problem. They are the direction of the applied load to mobilize the skin friction and the use of reduced sized sliding core. In this research, both the SPLT and the conventional pile loading test on 406mm diameter steel pipe pile have been performed. From the result, it would be safe to use the measured SPLT skin friction value directly in the design, since the value is somewhat lower than the value measured in the conventional test. It is further assumed that the tip resistance value of the reduced sized sliding core should properly be analysed by taking the incluonce of scale effect into consideration.

  • PDF

An Experimental Study on Water Resistance of Penetrating Water Repellency of Emulsified Silicon Type Exposed In The Outdoor Environment (옥외폭로에 따른 실리콘계 유화형 흡수방지재의 내수성에 관한 실험적 연구)

  • Shim Hyun-Bo;Lee Min-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.477-484
    • /
    • 2004
  • As a part of durability improvement of concrete-structure, penetrating water repellency of liquid type is applied to concrete surface. Besides, a related standard is made recently, but the standard has been prescribe for initial settlement state of penetrating water repellency of liquid type, to the exclusion of performance variation depending time and outdoor environment factor. For measurement of performance variation, we measured the weight of outdoor exposure specimen every regular intervals and check a measured value against a measured value of different condition specimen. Moreover, after the application of penetrating water repellent, measured a adhesive strength in tension between cement-polymer modified waterproof coatings and surface of specimen. The applied penetrating water repellent is a emulsified silicon type with a deep penetration depth. In view of the results so far achieved, the more a Quantity of application and active solid content does get, the deeper penetrating water repellency of emulsion type Penetrate get longer and supplied moisture increase in quantity, a penetrating water repellency of liquid type penetrates more deep, but a quantity of water absorption increase gradually. Perhaps this result is caused by a reduction of active solid content on concrete surface, because active ingredient is moved into the concrete by dissolution.

Study on the Damage Pattern Analysis of a 3 Phase 22.9/3.3kV Oil Immersed Transformer and Judgment of the Cause of Its Ignition (3상 22.9/3.3kV 유입변압기의 소손패턴 해석 및 발화원인 판정에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1274-1279
    • /
    • 2011
  • The purpose of this paper is to present the manufacturing defect and damage pattern of a 3 phase 22.9/3.3kV oil immersed transformer, as well as to present an objective basis for the prevention of a similar accident and to secure data for the settlement of PL related disputes. It was found that in order to prevent the occurrence of accidents to transformers, insulating oil analysis, thermal image measurement, and corona discharge diagnosis, etc., were performed by establishing relevant regulation. The result of analysis performed on the external appearance of a transformer to which an accident occurred, the internal insulation resistance and protection system, etc., showed that most of the analysis items were judged to be acceptable. However, it was found that the insulation characteristics between the primary winding and the enclosure, those between the ground and the secondary winding, and those between the primary and secondary windings were inappropriate due to an insulating oil leak caused by damage to the pressure relief valve. From the analysis of the acidity values measured over the past 5 years, it is thought that an increase in carbon dioxide (CO2) caused an increase in the temperature inside the transformer and the increase in the ethylene gas increased the possibility of ignition. Even though 17 years have passed since the transformer was installed, it was found that the system's design, manufacture, maintenance and management have been performed well and the insulating paper was in good condition, and that there was no trace of public access or vandalism. However, in the case of transformers to which accidents have occurred, a melted area between the upper and the intermediate bobbins of the W-phase secondary winding as well as between its intermediate and lower bobbins. It can be seen that a V-pattern was formed at the carbonized area of the transformer and that the depth of the carbonization is deeper at the upper side than the lower side. In addition, it was found that physical bending and deformation occurred inside the secondary winding due to non-uniform pressure while performing transformer winding work. Therefore, since it is obvious that the accident occurred due to a manufacturing defect (winding work defect), it is thought that the manufacturer of the transformer is responsible for the accident and that it is lawful for the manufacture to investigate and prove the concrete cause of the accident according to the Product Liability Law (PLL).

An Application of Construction Sequence Analysis for Checking Structural Stability of High-Rise Building under Construction (초고층 건물의 시공 중 구조적 안정성 검토를 위한 시공단계해석의 적용)

  • Eom, Tae-Sung;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.211-221
    • /
    • 2009
  • With recent trends of super-tallness, atypical plan shapes and zoning constructions in high-rise buildings, a structural stability of the building under construction is arising as a key issue for design and construction plan. To ensure the structural stability under construction, the differential column shortening of vertical members, the lateral displacement of tower frames, and differential settlement of raft foundation by unbalanced distributions of a tower self-weight before the completion of a lateral load resisting system should be checked by construction sequence analysis, which should be performed by systematic combinations with structural health monitoring, construction compensation program, and construction panning. This paper presents the scheme of zone-based construction sequence analysis by using the existing commercial analysis program, to check the stability of high-rise building under construction. This scheme is applied to 3-dimensional structural analysis for a real high-rise building under construction. The analysis includes real construction zoning plans and schedules as well as creep and shrinkage effects and time-dependent properties of concrete. The simplified construction sequence and assumed material properties were continuously updated with the change on construction schedule and correlations with in-situ measurement data.

Dynamic-stability Evaluation of Unsaturated Road Embankments with Different Water Contents (함수비에 따른 불포화 도로성토의 동적 안정성 평가)

  • Lee, Chung-Won;Higo, Yosuke;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.5-21
    • /
    • 2014
  • It has been pointed out that the collapses of unsaturated road embankments caused by earthquake are attributed to high water content caused by the seepage of the underground water and/or the rainfall infiltration. Hence, it is important to study influences of water content on the dynamic stability and deformation mode of unsaturated road embankments for development of a proper design scheme including an effective reinforcement to prevent severe damage. This study demonstrates dynamic centrifugal model tests with different water contents to investigate the effect of water content on deformation and failure behaviors of unsaturated road embankments. Based on the measurement of displacement, the pore water pressure and the acceleration during dynamic loading, dynamic behavior of the unsaturated road embankments with about optimum water content and the higher water content than the optimum one have been examined. In addition, an image analysis has revealed the displacement field and the distributions of strains in the road embankment, by which deformation mode of the road embankment with higher water content has been clarified. It has been confirmed that in the case of higher water content the settlement of the crown is large mainly owing to the volume compression underneath the crown, while the small confining pressure at the toe and near the slope surface induces large shear deformation with volume expansion.

A Study on Updating of Digital Map using Beacon GPS (Beacon GPS를 이용한 수치지도 갱신에 관한 연구)

  • Yun, Bu-Yeol;Moon, Doo-Youl;Hong, Soon-Heon
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2006
  • Nowadays, various digital maps on a reduced scale were drawn in Korea including the topographic series of a nation. Though these digital maps are drawn and revised by using aerial photograph or satellite image, there are some problems that it is difficult to revise or renew the topography and natural feature immediately which changes frequently. As the countermeasures of these problems we use GPS accumbency method, which provides user with convenience and accumbency accuracy which is required to revise and renew digital maps. But acquiring correct position by using GPS only may cause not a few errors because of environmental effect of satellite signal errors that GPS obtains. Although accumulated errors which is the major problem of existing method was diminished owing to the position signal received from satellite which is about 20,183km above, the area that can not receives the signal is occur such as woods and high-rise buildings space. And because of the GDOP (Geometry Dilution of Precision) of GPS satellite and the periodically changing orbit of the satellite, the position calculating problems occur. For settlement of these problems and accurate position determination, DGPS (Differential GPS) is indispensably needed. So, in this study, by adapting Radio Beacon Receiver for marine position determination which is the most convenience method of DGPS methods, we elevated accuracy of modification and renewal of digital map and, having wide application in various measurements, proposed the rapid measurement method about widespread area. In this study, wewant to propose the work scheme of rapid modification and renewal of digital map by using Beacon GPS which is comparatively cheap of all the DGPS methods and which makes it possible to measure independently.

  • PDF

Back Analysis of Field Measurements Around the Tunnel with the Application of Genetic Algorithms (유전자 알고리즘을 이용한 터널 현장 계측 결과의 역해석)

  • Kim Sun-Myung;Yoon Ji-Sun;Jun Duk-Chan;Yoon Sang-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.69-78
    • /
    • 2004
  • In this study, the back analysis program was developed by applying the genetic algorithm, one of artificial intelligence fields, to the direct method. The optimization process which has influence on the efficiency of the direct method was modulated with genetic algorithm. On conditions that the displacement computed by forward analysis for a certain rock mass model was the same as the displacement measured at the tunnel section, back analysis was executed to verify the validity of the program. Usefulness of the program was confirmed by comparing relative errors calculated by back analysis, which is carried out under the same rock mass conditions as analysis model of Gens et at (1987), one of back analysis case in the past. We estimated the total displacement occurring by tunnelling with the crown settlement and convergence measured at the working faces in three tunnel sites of Kyungbu Express railway. Those data measured at the working face are used for back analysis as the input data after confidence test. As the results of the back analysis, we comprehended the tendency of tunnel behaviors with comparing the respective deformation characteristics obtained by the measurement at the working face and by back analysis. Also the usefulness and applicability of the back analysis program developed in this study were verified.

The Study on the Development and the Applicability of Consolidation Analysis Program Considering the Creep Strain (Creep 변형을 고려한 압밀해석 프로그램의 개발과 적용성 분석)

  • Kim, Su-Sam;Jeong, Seung-Yong;An, Sang-Ro
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.129-142
    • /
    • 1998
  • This research is focused on the inducement of the constitutive equation considering the creep strain component and on the development of a finite element method program. The purpose of this research was to contribute to the design of construction structures or to the construction management in soft clay ground through predicting the long-term strain of construction structures reasonably bused on the above program. Modified Cam Clay model was adopted to describe the elastic-plastic behavior of clayey soil. And in the calculation of the creep sprain, the secondary coefficient of consolidation C. was applied for considering the volumetric creep element and the constants m, $\alpha$, A were rosed by the empirical creep equation proposed by Singh 8E Mitchell for considering the deviatoric creep element. To examine the reliability of the program which is developed in this study, the estimated values by this program were compared with the theoretical solution and the experimental results. And the applicability of the developed program was found to be reliable from the sensitive analysis of each parameters used in this study. According to the results obtained from the application of the program on the field measurement data, the estimated values by the program were found with be consistent with the actual values. And from the analysis of the displacement of embankments, the case of considering the creep behavior induced much fower errors than the case of neglecting it. But the results obtained from considering the volumetric creep behavior only were slightly underestimated the results from considering the deviator creep behavior showed the slightly overestimated values. Therefore, it remains the task of further studios to develop the laboratory test devices to obtain the reliable creep parameters, and to select the appropriate soil parameters, etc.

  • PDF

Evaluation of the Behavior of Dredged Materials in Ocean Dumping Area (해양투기장에서 준설토의 투기에 따른 거동 평가)

  • Lee, Joong-Woo;Oh, Dong-Hoon;Lee, Seung-Chul;Kim, Hyung-Chul;Kim, Kang-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.433-438
    • /
    • 2006
  • When we consider to develop a new harbor, the most important factor, we think, is the lowest water depth of waterway and approaching channel for safe navigation of vesse. The existing harbors have been being dredged to meet the international trend of jumbo sized vessels by adopting the new design criteria. As the dredged materials over the expected at the design level were common and there are still lack of land based reclamation area, we have no choice to discharge the dredged materials in open sea area. In this study, we analysed the behavior of discharged materials at the dumping area of offshore open sea, which were collected from the dredging work at the waterway in Busan New Port. We measured the tidal currents and analyzed the waters of dumping site after the dumping work. these were used to evaluate the numerical models. Suspended Solids(SS) were introduced to the diffusion model. Because of the characteristics of the dumping site, the speed of initial diffusion and settle down of the discharged materials was so fast. Therefore, we believe that the dumped materials do not cause a significant impact to the marine environment.

  • PDF

Properties Evaluation and flowability of Controlled Low Strength Materials Utilizing Industrial By-Products (산업부산물을 활용한 저강도 고유동 채움재의 유동성 및 물성평가)

  • Cho, Yong-Kwang;Kim, Chun-Sik;Nam, Seong-Young;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.64-69
    • /
    • 2018
  • The purpose of this study is to expand the use of coal ash and coal slag in thermal power plants. In addition, controlled low strength materials was developed to prevent mine settlement. Bottom ash and KR slag are mixed at ratio of 7:3 to expand the use of industrial by-products through carbonate reaction and inhibit the exudation of heavy metals. In order to efficiently fill the abandon mine, workability and physical properties were evaluated according to flow. As a result of elution of harmful substance experiment, it was confirmed that the carbonation reaction inhibited the elution of heavy metals. It was confirmed that the difference in water ratio was the difference in specific surface area of the controlled low strength materials. It was confirmed that the working efficiency is excellent when the flowability is 300mm compared to 260mm. compressive strength measurement result was relatively high at 260mm compared to 300mm because the number of pores due to decrease of water ratio was small.