• Title/Summary/Keyword: measurement of proximate composition

Search Result 16, Processing Time 0.021 seconds

Dietary supplementation of Eucommia leaf extract to growing-finishing pigs alters muscle metabolism and improves meat quality

  • Zhenglei Shen;Chuxin Liu;Chuangye Deng;Qiuping Guo;Fengna Li;Qingwu W. Shen
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.697-708
    • /
    • 2024
  • Objective: The objective of this study was to investigate the influence of dietary supplementation of Eucommia ulmoides leaf extract (ELE) on muscle metabolism and meat quality of pigs with and without pre-slaughter transportation. Methods: In a 43-day feeding experiment, a total of 160 pigs with an initial body weight 60.00±2.00 kg were randomly assigned into four groups in a completely randomized design with 10 replicates. Pigs in groups A and C were fed a basal diet and pigs in groups B and D were fed a basal diet supplemented with 0.5% ELE. Pigs were slaughtered with (group B and D) or without (group A and C) pre-slaughter transport. Muscle chemical composition, postmortem glycolysis, meat quality and muscle metabolome were analyzed. Results: Dietary ELE supplementation had no effect on the proximate composition of porcine muscle, but increased free phenylalanine, proline, citruline, norvaline, and the total free amino acids in muscle. In addition, dietary ELE increased decanoic acid and eicosapentaenoic acid, but decreased heptadecanoic acid, oleic acid, trans-oleic acid, and monounsaturated fatty acids in muscle. Meat quality measurement demonstrated that ELE improved meat water holding capacity and eliminated the negative effects of pre-slaughter transport on meat cooking yield and tenderness. Dietary ELE reduced muscle glycolytic potential, inhibited glycolysis and muscle pH decline in the postmortem conversion of muscle to meat and increased the activity of citrate synthase in muscle. Metabolomics analysis by liquid chromatographic tandem mass spectrometric showed that ELE enhanced muscle energy level, regulated AMP-activated protein kinase (AMPK) signaling, modulated glycogenolysis/glycolysis, and altered the metabolism of carbohydrate, fatty acids, ketone bodies, amino acids, purine, and pyrimidine. Conclusion: Dietary ELE improved meat quality and alleviated the negative effect of pre-slaughter transport on meat quality by enhancing muscle oxidative metabolism capacity and inhibiting glycolysis in postmortem muscle, which is probably involved its regulation of AMPK.

Studies on the Quality Evaluation of Korean Red Pepper by Color Measurement (색소측정에 의한 고추의 품질평가에 관한 연구)

  • Lee, Hyun-Duck;Lee, Cherl-Ho
    • Journal of the Korean Society of Food Culture
    • /
    • v.7 no.2
    • /
    • pp.105-112
    • /
    • 1992
  • The general properties(size, shape, fruit constituents) of ten different varieties of dried red pepper and the proximate chemical composition, carotenoids content and Hunter color values of their powders were examined in order to establish an objective instrumental method to evaluate the consumer acceptability of red pepper powder. The results of instrumentally measured color values were compared with the sensory acceptability data obtained from 100 housewives in Korea. Red carotenoid consisted of 68-85% of total carotenoids, while ${\beta}-carotene$ content showed close relationship with the sensory color preference. The values of Hunter color system, L,a,b and axL, showed significant relationships with the sensory color preference. Especially, axL value had close relationship with both color preference and pungency intensity of red pepper. Therefore, we suggest the consumer acceptability of red pepper powder can be determined instrumentally by axL value of colorimeter. Sensory acceptability=0.02001(axL)-12.5774

  • PDF

Sterilization and Storage of Onion Powder by Irradiation (방사선(放射線)에 의(依)한 양파분말의 살균(殺菌) 및 저장(貯藏))

  • Byun, Myung-Woo;Kwon, Joong-Ho;Cho, Han-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.47-50
    • /
    • 1984
  • Effects of irradiation on microbiological, physicochemical aspects and quality of onion powder were investigated during three months storage. Total bacteria and coliform were sterilized by irradiation of 7 and 5 kGy, respectively and no microorganisms were grown after three months storage at $30{\pm}1^{\circ}C$. $D_{10}$ value of total bacteria was 1.64 kGy. Proximate composition of onion powder was not remarkably changed during storage except the slight decrease of pyruvic acid content. Color difference could not be distinguished by naked eye but was slightly changed by the mechanical measurement.

  • PDF

Biological Activity and Chemical Analysis of Cattail Pollens (포황(蒲黃)의 성분분석과 생리활성)

  • Lee, Bung-Chan;Park, Hae-Min;Sim, Hu-Sung;Kim, Gon-Sup;Gu, Ja-Hyeong;Oh, Man-jin
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.2
    • /
    • pp.185-197
    • /
    • 2009
  • For utilizing Cattail pollen as a raw material for functional foods, the nutrients such as free sugar, free amino acid, fatty acid composition, flavonoid content, and the biological activity within Cattail pollen were measured. The results of proximate analysis within Cattail pollen included the following readings: 12.7-13.2% of moisture, 15.7-17.8% of crude protein, 1.3% of crude fat, 7.5-7.7% of free sugar, 13.7-18.6% of crude fiber, 3.4-4.9% of ash, and 49.7-55.9% of nitrogen free extracts. The composition of free amino acids consisted of 1.923% of T. orientalis, 0.907% of T. angustata, and 0.333% of T. latifolia, which were measurements that varied significantly among different species. However, all species showed considerable portions of GABA alanine, glutamic acid, and proline. Specifically, it was shown that the GABA composition, which is known for increasing immunity while simultaneously lowering blood pressure, exceeded 50%. Therefore, this result implies that Cattail pollens have potential as a powerful utilization for functional foods. The composition of the fatty acids mainly consisted of linoeic, palmitic acid, oleic acid, and linolenic acid, and didn't show many variances across different species. Also, the total contents of unsaturated fatty acid were particularly high with a measured ratio of 67.2-76.0% value. Mineral in Cattail pollen was composed of 0.354-0.492% of K, 0.0516-0.0546% of Mg, 0.045-0.0486% of Ca, and 0.0101-0.0204% of Na. Among the Cattail pollens known as anti-oxidants, flavonoid contains 0.169-0.186% of quercetin, and therefore is the largest constituent followed by rutin making up a measurement of 0.0094-0.0147%. For the purpose of the study, the Cattail pollen and its extracts were fed to SC class rats for a span of 4 weeks. Then, the DPPH radical scavenging activity was measured from the tested rats'serums and the results showed significant variances. Also, the results indicated that the cholesterol and glucose levels in the blood were decreased which in turn led to the conclusion that the cattail pollen can help hyperlipidemia and diabetic treatments.

  • PDF

Physicochemical Properties of Yanggaeng with Lentil Bean Sediment (렌틸콩 앙금 첨가에 따른 양갱의 품질 특성)

  • Noh, Dan-Bi;Kim, Kyoung-Hee;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.865-871
    • /
    • 2016
  • This study investigated the quality characteristics of Yanggaeng added with lentil bean sediment. Yanggaeng was prepared by addition of 0, 25, 50, and 75% (w/w) lentil bean sediment to white bean basic formulation. For the proximate composition measurement, lentil bean sediment consisted of 15.63% moisture, 17.31% crude protein, 0.92% crude ash, and 0.31% crude fat. The sediment yield of lentil beans was 54.25%. The moisture content of Yanggaeng significantly increased with increasing lentil bean sediment content. The total soluble solid content ($^{\circ}Brix$) of Yanggaeng significantly decreased with increasing lentil bean sediment content, whereas the pH was not significantly different between the control and experimental groups. The lightness of Yanggaeng significantly decreased with increasing lentil bean sediment content, whereas redness and yellowness significantly increased with increasing lentil bean sediment content. The springiness, gumminess, and chewiness of Yanggaeng decreased with increasing lentil bean sediment content, whereas hardness and cohesiveness was not significantly different between the control and experimental groups. The total phenolic content and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity significantly increased with increasing lentil bean sediment content. Yanggaeng containing 25% lentil bean sediment had acceptable sensory properties, such as taste, texture, and overall preferences. Thus, our results suggest that Yanggaeng containing 25% lentil bean sediment could improve the sensory properties and antioxidant activities of Yanggaeng.

Physicochemical Composition of Buckwheat Microgreens Grown under Different Light Conditions (다른 광조건 하에서 재배된 메밀 새싹채소의 이화학적 특성)

  • Choi, Mi-Kyeong;Chang, Moon-Sik;Eom, Seok-Hyun;Min, Kwan-Sik;Kang, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.709-715
    • /
    • 2015
  • As consumers interest in microgreens is increasing worldwide, the production of leafy microgreens uisng different LED lights was investigated in this study. The experiment was carried out to evaluate the effects of different LED lights on the composition and vitamin C contents of buckwheat microgreens. Physicochemical properties of buckwheat microgreens grown under different lights (red, blue, and white) and control exposed to a dark room were investigated. Moisture contents of buckwheat microgreens were 95.65% under white light (WL), 95.75% under blue light (BL), 90.77% under red light (RL), and 89.71% under dark room (DR). Crude ash contents of buckwheat microgreens grown under WL, DR, RL, and BL were 0.39%, 0.39%, 0.31%, and 0.37%, respectively. Crude protein contents of buckwheat microgreens grown under DR, RL, WL, and BL were 7.12%, 7.81%, 1.60%, and 2.40%, respectively. Crude fat contents of buckwheat microgreens grown under DR, BL, RL, and WL were 1.12%, 0.54%, 0.35%, and 0.22%, respectively. $^{\circ}Brix$ was the highest in microgreens grown under BL and RL and the lowest in buds grown under DR. Vitamin C content was the highest in buds grown under WL and the lowest in buds grown under BL. Total chlorophyll content was the highest in microgreens grown under RL and the lowest in buds grown under WL. For mineral content measurement of buckwheat microgreens, Ca, K, Mg, and P contents were high whereas B, Cu, and Zn contents were not detected. The mineral contents of buckwheat microgreens according to each color of light showed significant differences. These results demonstrated that treatment of different colored LED lights during cultivation was able to increase vitamin C content up to affecting the nutritional value of buckwheat microgreens.