• Title/Summary/Keyword: measurement of phase angle

Search Result 190, Processing Time 0.03 seconds

The analysis of power quality characteristics in high speed train through neutral section of catenary system (절연구간운행 고속철도차량 전력품질 특성 분석)

  • Hong, Hyun-Pyo;Choi, Eui-Seong;Lee, See-Bin;Lee, Hee-Soon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.634-643
    • /
    • 2011
  • The neutral section was installed in order to prevent conflict with different phase angle source in electric railway catenary system. The speed of electric train reduced due to coasting operation by notch off when it passed the neutral section. And, the catenary wire was damaged and the accident might be happened because of the arc generation when the electric train passed the neutral section with notch off condition. The inrush current of main transformer installed tiling train is analyzed during the operation of MCB(main circuit break) passing through the neutral section. The instantaneous waveform of load current were analyzed in case of powering and regenerative braking. Inrush current waveform with run of AC railway train showed that inrush current waveform and harmonics, the inrush current generated from main transformer in train has bad effects on power quality problem. In order to reduce these inrush currents, the MCB is connected when the phase angle of voltage is 90 degree. This paper is to measure inrush current and harmonics in main transformer of high speed train in neutral section of electric railway. This measurement report is used to control minimum inrush current in algorithm and power phase angle.

  • PDF

Development of an Automatic Evaluation System for the Precision Analysis of Potential Transformer Burden Characteristics (전압변성기용 부담특성 정밀분석용 자동평가시스템의 개발)

  • Kwon, Sung-Won;Kim, Mun-Seog;Jung, Jae Kap;Lee, Sung-Ha;Kim, Yung Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.457-464
    • /
    • 2005
  • Both ratio error and phase angle error in potential transformer(PT) are critically affected by used burden, connected in parallel to the secondary terminal of the PT. Thus precise measurement of burden value is very important for the evaluation of PT An automatic measurement system has been developed for the measurement of burden value and power factor of a burden. The ac voltage, current and power of the burden are measured precisely, and the burden value and power factor were calculated from these measured values. The resistance and inductance values of the tested burden are also calculated. The overall measurement uncertainties are calculated and reported with the burden value and power factor. The best measurement uncertainty for the burden measurement with the developed automatic measurement system was estimated to be 0.5 $\%$.

Improved DC Offset Error Compensation Algorithm in Phase Locked Loop System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1707-1713
    • /
    • 2016
  • This paper proposes a dc error compensation algorithm using dq-synchronous coordinate transform digital phase-locked-loop in single-phase grid-connected converters. The dc errors are caused by analog to digital conversion and grid voltage during measurement. If the dc offset error is included in the phase-locked-loop system, it can cause distortion in the grid angle estimation with phase-locked-loop. Accordingly, recent study has dealt with the integral technique using the synchronous reference frame phase-locked-loop method. However, dynamic response is slow because it requires to monitor one period of grid voltage. In this paper, the dc offset error compensation algorithm of the improved response characteristic is proposed by using the synchronous reference frame phase-locked-loop. The simulation and the experimental results are presented to demonstrate the effectiveness of the proposed dc offset error compensation algorithm.

Unambiguous 3D Surface Measurement Method for a Micro-Fresnel Lens-Shaped Lenticular Lens Based on a Transmissive Interferometer

  • Yoon, Do-Young;Kim, Tai-Wook;Kim, Minsu;Pahk, Heui-Jae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • The use of a laser interferometer as a metrological tool in micro-optics measurement is demonstrated. A transmissive interferometer is effective in measuring an optical specimen having a high angle slope. A configuration that consists of an optical resolution of 0.62 micron is adapted to measure a specimen, which is a micro-Fresnel lens-shaped lenticular lens. The measurement result shows a good repeatability at each fraction of facets, however, a reconstruction of the lens shape profile is disturbed by a known problem of $2{\pi}$-ambiguity. To solve this $2{\pi}$-ambiguity problem, we propose a two-step phase unwrapping method. In the first step, an unwrapped phase map is obtained by using a conventional unwrapping method. Then, a proposed unwrapping method based on the shape modeling is applied to correct the wrongly unwrapped phase. A measured height of each facet is compared with a profile result measured by AFM.

Comparison of VUF using Resistor & Inductive Load (저항성 및 유도성 부하의 운전시 전압불평형율의 비교)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong;Lee, Jong-Han;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1062-1064
    • /
    • 2005
  • 3 phase 4-wire system has been widely used in the customer's application due to merit of 1 bank construction of loads such as 1-phase lighting, heat and 3-phase motor. But if the load distribution is not uniformed by the operation conditions, voltage unbalance is highly appeared by the difference of each phase current value. Especially, if the linear load such as resistance or inductive load has different power factor value, voltage unbalance factor is not the same due to the phase angle and magnitude of each phase voltage. In this paper, we composed the measurement device and analyzed by varying of load pattern.

  • PDF

Preparation and Characterization of the Asymmetric Microporous Poly(vinylidene fluoride) (PVDF) Blend Membranes with Hydrophilic Surfaces

  • Hwang, Jeong-Eun;JeGal, Jong-Geon
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • To prepare chemically stable asymmetric microporous membranes with a hydrophilic surface, which would be expected to have better antifouling properties, poly(vinylidene fluoride) (PVDF) blend membranes were prepared by the phase inversion process. PVDF mixture solutions in N-methylpyrrolidone (NMP) blended with several polar potential ionic polymers such as polyacrylonitrile (PAN), poly(methylmethacrylate) (PMMA) and poly(N-isopropylacrylamide) (NIPAM) were used for the formation of the PVDF blend membranes. They were then characterized with several analytical methods such as FESEM, FTIR, contact angle measurement, pore size distribution and permeability measurement. Regardless of different polar polymers blended, they all showed a finger-like structure with more hydrophilic surface than the pristine PVDF membrane. For all the PVDF blend membrane, due to the polar potential ionic polymers used, the flux of those was improved. Especially the PVDF blend membrane with NIPAM showed the highest flux among the membranes prepared. Also antifouling property of the PVDF membrane was improved by the use of the polar polymers.

Initial Growth and Surface Stability of 1,4,5,8,9,11-Hexaazatriphenylene-exanitrile (HATCN) Thin Film on an Organic Layer

  • Kim, Hyo Jung;Lee, Jeong-Hwan;Kim, Jang-Joo;Lee, Hyun Hwi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.192.2-192.2
    • /
    • 2013
  • Crystalline order and surface stability of 1,4,5,8,9,11-hexaazatriphenylene-hexanitrile (HATCN) thin films on organic surface were investigated using grazing incidence wide angle x-ray scattering and x-ray reflectivity measurements. In the initial growth regime (less than 20 nm), HATCN molecules were stacked to low crystalline order with substantial amorphous phase. Meanwhile, a thicker film with 50 nm thickness showed high crystalline order of hexagonal phase with three different orientational domains. The domain distribution was quantitatively obtained as a function of tilted angle. By an organic-inorganic interface formation of IZO/HATCN thin film from an indium zinc oxide (IZO) electrode deposition, the surface stability of HATCN film was investigated and the sharp interface was confirmed by the x-ray reflectivity measurement.

  • PDF

Resistive shunt with low phase angle under harmonic effect (고조파 영향에 의한 위상 변화가 적은 분류기)

  • Lee, J.H.;Park, Y.T.;Lee, M.M.;Seo, J.H.;Jang, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.285-287
    • /
    • 1997
  • An AC shunt with low phase angle has been designed for an AC current measurement, such as currents with harmonics. This $0.2\;{\Omega}$ shunt of 5 A rated current is composed of fifty $10\;{\Omega}$ metal film resistors and applicable to the frequency band of DC to 1 kHz.

  • PDF

A Theoretical Study for the Thermal Conductivity Measurement of Anisotropic Material using Photothermal Deflection Spectroscopy (광열편향법을 이용한 이방성 재료의 열전도계수 측정에 관한 이론적 연구)

  • Jeon, Pil-Soo;Yoo, Jai-Suk;Kim, Hyun-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2465-2470
    • /
    • 2007
  • We have analyzed the three-dimensional thermal conduction in anisotropic materials using nonsymmetric-Fourier transforms. And a complete theoretical treatment of the photothermal deflection spectroscopy has been performed for thermal conductivity measurement in anisotropic medium. Thermal conductivity tensor was determined by the deflection angle and phase angle with the relative position between the heating and probe beams. The influence of the parameters, such as modulation frequency of the heating beam, the thermal conductivity tensor, was investigated.

  • PDF

An Adaptive Scheme for Frequency Measurement in Power System (적응기법을 이용한 전력계통의 주파수 측정)

  • Park, Cheol-Won;Nam, Si-Bok;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.143-152
    • /
    • 2002
  • Frequency is regarded as one of most important indices for the operating power systems. Several digital techniques for measuring frequency have been presented in the last decades. This paper proposes a design and implementation an adaptive scheme using phase angle difference calculation fort frequency measuring in power system. The advantages of the proposed technique are demonstrated by fault signals from EMTP simulation and user defined arbitrary signals by Excel program. The proposed technique is compared with the conventional methods. Performance teat results indicate that the proposed technique provides accurate measures in pretence of noise and harmonics and in case faults and is suitable for measurement near-nominal, nominal. and off-nominal frequencies. We can see that It will be useful in microprocessor based relays and digital metiers that need to measure power system frequency.