• Title/Summary/Keyword: measurement interval

Search Result 689, Processing Time 0.025 seconds

Development of Performance Evaluation Formula for Deep Learning Image Analysis System (딥러닝 영상분석 시스템의 성능평가 산정식 개발)

  • Hyun Ho Son;Yun Sang Kim;Choul Ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.78-96
    • /
    • 2023
  • Urban traffic information is collected by various systems such as VDS, DSRC, and radar. Recently, with the development of deep learning technology, smart intersection systems are expanding, are more widely distributed, and it is possible to collect a variety of information such as traffic volume, and vehicle type and speed. However, as a result of reviewing related literature, the performance evaluation criteria so far are rbs-based evaluation systems that do not consider the deep learning area, and only consider the percent error of 'reference value-measured value'. Therefore, a new performance evaluation method is needed. Therefore, in this study, individual error, interval error, and overall error are calculated by using a formula that considers deep learning performance indicators such as precision and recall based on data ratio and weight. As a result, error rates for measurement value 1 were 3.99 and 3.54, and rates for measurement value 2 were 5.34 and 5.07.

High-impact chronic pain: evaluation of risk factors and predictors

  • Ilteris Ahmet Senturk;Erman Senturk;Isil Ustun;Akin Gokcedag;Nilgun Pulur Yildirim;Nilufer Kale Icen
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.84-97
    • /
    • 2023
  • Background: The concept of high-impact chronic pain (HICP) has been proposed for patients with chronic pain who have significant limitations in work, social life, and personal care. Recognition of HICP and being able to distinguish patients with HICP from other chronic pain patients who do not have life interference allows the necessary measures to be taken in order to restore the physical and emotional functioning of the affected persons. The aim was to reveal the risk factors and predictors associated with HICP. Methods: Patients with chronic pain without life interference (grade 1 and 2) and patients with HICP were compared. Significant data were evaluated with regression analysis to reveal the associated risk factors. Receiving operating characteristic (ROC) analysis was used to evaluate predictors and present cutoff scores. Results: One thousand and six patients completed the study. From pain related cognitive processes, fear of pain (odds ratio [OR], 0.92; 95% confidence interval [CI], 0.87-0.98; P = 0.007) and helplessness (OR, 1.06; 95% CI, 1.01-1.12; P = 0.018) were found to be risk factors associated with HICP. Predictors of HICP were evaluated by ROC analysis. The highest discrimination value was found for pain intensity (cut-off score > 6.5; 83.8% sensitive; 68.7% specific; area under the curve = 0.823; P < 0.001). Conclusions: This is the first study in our geography to evaluate HICP with measurement tools that evaluate all dimensions of pain. Moreover, it is the first study in the literature to evaluate predictors and cut-off scores using ROC analysis for HICP.

Reliability and Validity of Balancia 2.5 Program Using Wii Balance Board for Assessment of Static Balance Ability

  • Ho Kim;Dong-Min Kum;Won-Seob Shin
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.488-492
    • /
    • 2022
  • Objective: The purpose of this study is to find out the reliability and validity of the newly updated Balancia 2.5 program using Wii balance board through equipment that can measure center of pressure data with the precision. Design: Cross-sectional study Methods: Twenty-seven healthy adults participated in the study. The subjects were assessed for static balance ability by Accusway, and were assessed for static balance ability on Wii balance board connected to theBalancia 2.5 program.To limit postural fluctuations due to stare, the subjects were asked to look at a 15 cm dot drawn 3 m in front of them for 30 seconds with their eyes open. Static balance ability data such as path length and sway velocity were extracted from all measurement tools.Intra-rater and inter-rater reliability and validity were extracted through intraclass correlation coefficient (ICC) and 95% confidence interval (CI). Results: The intra-rater reliability that the same rater shows consistent results through test-retest was a high level at ICC=0.968 (0.926~0.986), and inter-rater reliability that the requires consistent results even when measured by different raters was a high level at ICC=0.943 (0.870~0.975). The validity was a high level at ICC=0.948 (0.881~0.977), which shows whether the measurement tool is properly measuring what it is intended to measure. Conclusions: The Balancia 2.5 program, newly updated through this study, proved to be a program with high reliability and validity in evaluating static balance ability like the existingBalancia 2.0 program.

Low Skeletal Muscle Mass and Clinical Outcomes in Chronic Obstructive Pulmonary Disease

  • Yong Jun Choi;Hye Jung Park;Jae Hwa Cho;Min Kwang Byun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.4
    • /
    • pp.272-283
    • /
    • 2023
  • Background: In patients with chronic obstructive pulmonary disease (COPD), decreased muscle mass is a frequently encountered comorbidity in clinical practice. However, the evaluation of muscle mass in patients with COPD in real-world practice is rare. Methods: We retrospectively reviewed the electronic medical records of all patients with COPD who underwent bioelectrical impedance analysis at least once between January 2011 and December 2021 in three hospitals. Then, we analyzed the performance rate of muscle mass measurement in the patients and the correlation between muscle mass, clinical parameters, and COPD prognosis. Results: Among the 24,502 patients with COPD, only 270 (1.1%) underwent muscle mass measurements. The total skeletal muscle mass index was significantly correlated with albumin, alanine transaminase, and creatinine to cystatin C ratio in patients with COPD (r=0.1614, p=0.011; r=0.2112, p=0.001; and r=0.3671, p=0.001, respectively). Acute exacerbation of COPD (AE COPD) was significantly correlated with muscle mass, especially the truncal skeletal muscle mass index (TSMI) in males (r=-0.196, p=0.007). In the multivariate analysis, TSMI and cystatin C were significant risk factors for AE COPD (hazard ratio, 0.200 [95% confidence interval, CI, 0.048 to 0.838] and 4.990 [95% CI, 1.070 to 23.278], respectively). Conclusion: Low muscle mass negatively affects the clinical outcomes in patients with COPD. Despite its clinical significance, muscle mass measurement is performed in a small proportion of patients with COPD. Therefore, protocols and guidelines for the screening of sarcopenia in patients with COPD should be established.

Measurement of facial soft tissues thickness using 3D computed tomographic images (3차원 전산화단층찰영 영상을 이용한 얼굴 연조직 두께 계측)

  • Jeong Ho-Gul;Kim Kee-Deog;Han Seung-Ho;Shin Dong-Won;Hu Kyung-Seok;Lee Jae-Bum;Park Hyok;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.36 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • Purpose : To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. Materials and Methods : One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. Results : There were no statistically significant differences between the direct measurements and those using the 3D images (p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. Conclusion : The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissues thickness more easily in forensic science and anthropology.

  • PDF

Development of Micro Wired pH Electrode for Real-Time Monitoring for Gastroesophageal Reflux (위식도 역류 실시간 모니터링 마이크로 와이어 pH 전극 개발)

  • Kim, Eung-Bo;Lee, Kyu-Jin;So, Sang-Kyun;Joung, Yeun-Ho;Park, Jung Ho;Kim, Nam Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.277-284
    • /
    • 2017
  • This paper presents an implantable pH measurement electrode for wireless gastroesophageal reflux measurement. Usually, gastroesophageal reflux is diagnosed by a catheter-type wire connection between the esophagus and the diagnostic device which brings many side effects such as restriction of daily living, pain, and discomfort in the nasal cavity and pharynx of patients. In order to solve these issues, researchers have been studied a wireless measurement method and a micro-sized pH electrode for human body insertion is necessary. Commercial glass packaged pH meter is formed by a sensing and a reference electrodes in a KCl solution. However, if the glass meter is inserted into the human body, there are risks of leakage of the solution, breakage of the glass package, injury of the body elements. Therefore, the solution should be solidified on the micro-sized noble metal wire which has a characteristic of biocompatible. After solidified wire fabrication, the designed meter was tested for feasibility of measurement and the result was well agreed with pH values of commercial pH meter. Potentials in pH 1 to 12 solution was measured to obtain the sensitivity of the sensor with linearity. And we have designed a simulation of gastroesophageal reflux with symptom frequency, interval, and duration time in pH 2 solution. The proposed sensor has capable to get the same potential for 24 measurements in 3 days, and it has sensed same pH values of 2 for one hour with every 10 minutes. Furthermore, the sensor was survived for 48 hours with reasonable potentials in the acid solution.

Development of Smart Multi-function Ground Resistivity Measuring Device using Arduino in Wind Farm (풍력 발전단지내 아두이노를 활용한 스마트 다기능 대지 고유 저항 측정 장치 개발)

  • Kim, Hong-Yong;Yoon, Dong-Gi;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.65-71
    • /
    • 2019
  • Conventional methods of measuring ground resistance and ground resistance field measurement are used to measure voltage drop according to the resistance value of the site by applying current by installing a constant interval of measurement electrode. If the stratified structure of the site site is unique, errors in boundary conditions will occur in the event of back acid and the analysis of the critical ground resistance in the ground design will show much difference from simulation. This study utilizes the Arduino module and smart ground measurement technology in the convergent information and communication environment to develop a reliable smart land resistance measuring device even if the top layer of land is unique, to analyze the land resistance and accumulate data to predict the change in the age of the land. Considering the topographical characteristics of the site, we propose a ground resistance measuring device and its method of measuring ground resistance so that the auxiliary electrode can be installed by correctly positioning the angle and distance in measuring ground resistance. Not only is ground resistance value obtained through electrodes installed to allow accurate ground resistance values to be selected, but it can also be used as a useful material for installing electrical facilities in similar areas. Moreover, by utilizing reliable data and analyzing the large sections of the site, a precise analysis of the site, which is important in ground design as well as construction cost, is expected to be used much in ground facility design such as potential rise.

Surface Topographic Measurement Method for Assessing Lower Extremity Alignment: Examination on a novel clinical and research Tool (하지 정렬 평가를 위한 체표면 토포그래피를 이용한 측정법: 새로운 임상 및 연구 도구에 대한 검토)

  • Yim, Ji-Young;Yim, Hyun-Seung;Park, Dae-Sung;Lee, Na-Kyung;Lee, Na-Kyung
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.37-45
    • /
    • 2016
  • The purpose of this study was to assess the intra-rater, inter-rater and test-retest reliability and validity of frontal plane lower extremity alignment estimated from a rasterstereographic method using ABW-Mapper. Eighteen subjects participated in this study. The S angle (stereographic angle-frontal plane lower extremity alignment estimated from a rasterstereographic method) in standing was measured throughout the two sessions with one week interval by two different readers. In the first session, a reader measured S angle twice per subject with a short break in-between. The Q-angle (quadriceps angle) was measured using a standard goniometer from a photography taken through digital camera with the participant standing in the same position as in the S angle measurement. The HKA(hip-knee-ankle) angle was measured from a computer based digital radiograph with the computerized measurement software. Reliability was tested using intraclass correlation coefficients(ICC). Validity was tested using a Pearson's correlation coefficient. Excellent intra-rater(ICC=0.956~0.974), inter-rater(ICC=0.962), test-retest reliability (ICC=0.945) were demonstrated. There were strong negative correlations between S angle and Q-angle (r=-0.739), and between S angle and HKA angle (r=-0.702). Therefore, the S angle measured using a rasterstereographic mapper may be used to as a preliminary or supplementary tool to evaluate and study LE alignment in the frontal plane in relation to HKA angle or Q-angle.

Development of a new system for measurement of total effluent load of water quality

  • Keiji, Takase;Akira, Ogura
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.221-221
    • /
    • 2015
  • Sustainable use of water resource and conservation of water quality are essential problems in the world. Especially, problems of water quality are serious one for human health as well as ecological system of all creatures on the earth. Recently, the importance of total effluent load as well as the concentrations of pollutant materials has been recognized not only for the conservation of water quality but also for sustainable water use in watersheds. However, the measurement or estimation of total effluent load from non-point source area such as farm lands or forests may be more difficult because both of concentration and discharge of the water are greatly changed depending on various factors especially metrological conditions such as rainfall, while the measurement from a point source area may be easy because the concentration of pollutant materials and amount of discharge water are relatively steady. Therefore, the total effluent load from a non-point source is often estimated by statistical relationships between concentration and discharge, which is called as L-Q equation. However, a lot of work and time are required to collect and analyze water samples and to get the accurate relationship or regressive equation. So, we proposed a new system for direct measurement of total effluent load of water quality from non-point source areas to solve the problem. In this system, the overflow depth at a hydraulic weir is measured with a pressure gage every hourly interval to calculate the amount of hourly discharge at first. Then, the operating time of a small electric pump to collect an amount of water which is proportional to the discharge is calculated to intake the water into a storage tank. The stored water is taken out a few days later in a case of storm event or several weeks later in a case of non-rainfall event and the concentrations of water quality such as total nitrogen and phosphorous are analyzed in a laboratory. Finally, total load of the water quality can be calculated by multiplying the concentration by the total volume of discharge. The system was installed in a small experimental forestry watershed to check the performance and know the total load of water quality from the forest. It was found that the system to collect a proportional amount of water to actual discharge operated perfectly and a total load of water quality was analyzed accurately. As the result, it was expected that the system will be very available to know the total load from a non-point source area.

  • PDF

Development of flow measurement method using drones in flood season (I) - aerial photogrammetry technique (드론을 이용한 홍수기 유량측정방법 개발(I) - 항공사진측량 기법 적용)

  • Lee, Tae Hee;Lim, Hyeokjin;Yun, Seong Hak;Kang, Jong Wan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1049-1057
    • /
    • 2020
  • This study aimed to develop a flow measurement method using drone in flood season. Measuring flow in all branches is difficult to conduct annually due to budget and labor limitation, safety and river works. Especially when heavy rain like storm comes, changes in stage-discharge relationship should be reviewed; however, it is usually impeded by the aforementioned issues. To solve the problem, it developed a simple measuring method with a minimum of labor and time. A numeric map and numeric orthophoto coordinate of South Korea are mostly based on Transverse Mercator Projection (TM) in accordance with rectangular coordinate system and use World Geodetic Reference System 1980 (GRS80) oval figure for conversion. Applying a concept of aerial photogrammetry, it located four visible Ground Control Points (GCP) near the river at Uijeongbu-si (Singok Bridge) and Yeongdong-gun (Youngdong 2nd Bridge) station and measured the coordinates using VRS DGPS. Hovering at a same level, drones took orthophoto of water surface at an interval of 3 seconds. It defined the pictures with GRS80 TM coordinate system, a rectangular coordinate system and then conducted an orthometric correction using GCP coordinates. According to X and Y coordinate analysis, it estimated the distance between the floating positions at 3 seconds-intervals and calculated the flow through the flow area according to the flow path. This study attested applicability of the flow measurement method using drone in flood season by applying the rectangular coordinate system based on the concept of aerial photogrammetry.