• Title/Summary/Keyword: measurement fusion

Search Result 368, Processing Time 0.024 seconds

Midline-Splitting Open Door Laminoplasty Using Hydroxyapatite Spacers : Comparison between Two Different Shaped Spacers

  • Park, Jin-Hoon;Jeon, Sang-Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.1
    • /
    • pp.27-31
    • /
    • 2012
  • Objective : Although hydroxyapatite (HA) spacer has been used for laminoplasty, there have been no reports on factors associated with fusion and on the effects of HA shape. Methods : During January 2004 and January 2010, 45 patients with compressive cervical myelopathy underwent midline-splitting open door laminoplasty with winged (33 cases) and wingless (12 cases) HAs by a single surgeon. Minimal and mean follow up times were 12 and 28.1 months, respectively. Japanese Orthopedic Association (JOA) score was used for clinical outcome measurement. Cervical X-rays were taken preoperatively, immediately post-operatively, and after 3, 6, and 12 months and computed tomography scans were performed preoperatively, immediately post-operatively and after 12 months. Cervical lordosis, canal dimension, fusion between lamina and HA, and affecting factors of fusion were analyzed. Results : All surgeries were performed on 142 levels, 99 in the winged and 43 in the wingless HA groups. JOA scores of the winged group changed from $10.4{\pm}2.94$ to $13.3{\pm}2.35$ and scores of the wingless group changed from $10.8{\pm}2.87$ to $13.8{\pm}3.05$. There was no significant difference on lordotic and canal dimensional change between two groups. Post-operative 12 month fusion rate between lamina and HA was significantly lower in the winged group (18.2 vs. 48.8% p=0.001). Multivariate analysis showed that ossification of the posterior longitudinal ligament, male gender, and wingless type HA were significantly associated with fusion. Conclusion : Clinical outcome was similar in patients receiving winged and wingless HA, but the wingless type was associated with a higher rate of fusion between HA and lamina at 12 months post-operatively.

Commissioning Results of the Warm Compression System for the KSTAR Helium Refrigeration System (KSTAR 헬륨냉동기의 압축시스템 시운전 결과)

  • Park, Dong-Seong;Chang, Hyun-Sik;Joo, Jae-Joon;Moon, Kyung-Mo;Cho, Kwang-Woon;Kim, Yang-Soo;Bak, Ju-Shik;Kwon, Il-Keun;Cho, Myeon-Chul;Yang, Seung-Han
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.125-130
    • /
    • 2008
  • The main components of the KSTAR helium refrigeration system (HRS) can be classified into the warm compression system (WCS) and the cryogenic devices according to the operating temperature levels. The WCS itself consists of the compressor station (C/S) and the oil removal system (ORS). The process helium is compressed from 1 bar to 22 bar maximum in the C/S and downstream, the ORS removes the oil mixed in the helium to less than 10 ppbw as per the operation criteria of the cryogenic devices of the KSTAR HRS. After the installation, the pre-commissioning and commissioning activities were started on July, 2007. Before the start-up of the C/S, vibration measurement and the skid reinforcement jobs were performed for stable operation of the C/S. The results of the WCS performance tests met the requirements of the KSTAR HRS but satisfied the vibration level criteria only at the compressors' full load condition.

  • PDF

Study on INS/GPS Sensor Fusion for Agricultural Vehicle Navigation System (농업기계 내비게이션을 위한 INS/GPS 통합 연구)

  • Noh, Kwang-Mo;Park, Jun-Gul;Chang, Young-Chang
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.423-429
    • /
    • 2008
  • This study was performed to investigate the effects of inertial navigation system (INS) / global positioning system (GPS) sensor fusion for agricultural vehicle navigation. An extended Kalman filter algorithm was adopted for INS/GPS sensor fusion in an integrated mode, and the vehicle dynamic model was used instead of the navigation state error model. The INS/GPS system was consisted of a low-cost gyroscope, an odometer and a GPS receiver, and its performance was tested through computer simulations. When measurement noises of GPS receiver were 10, 1.0, 0.5, and 0.2 m ($1{\sigma}$), RMS position and heading errors of INS/GPS system at 5 m/s straight path were remarkably reduced with 10%, 35%, 40%, and 60% of those obtained from the GPS receiver, respectively. The decrease of position and heading errors by using INS/GPS rather than stand-alone GPS can provide more stable steering of agricultural equipments. Therefore, the low-cost INS/GPS system using the extended Kalman filter algorithm may enable the self-autonomous navigation to meet required performance like stable steering or more less position errors even in slow-speed operation.

Precipitation Behaviors of HgTe Nanoinclusions Formed in Thermoelectric PbTe: Initial Induced Lattice Mismatch, Theoretical Calculation and Experimental Verification (PbTe 열전재료에 형성된 HgTe 나노개제물의 석출거동: 초기 격자 불일치의 형성, 이론적 계산 및 실험적 증명)

  • Kim, Kyung-Ho;Kwon, Tae-Hyung;Park, Su-Han;Ahn, Hyung-Keun;Lee, Man-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.599-604
    • /
    • 2011
  • A highly strained nanostructure comprising crystallographically aligned HgTe nanoinclusions and a surrounding PbTe matrix has been synthesized using a precipitation process of supersaturated HgTe-PbTe alloys. From the early precipitation stage, HgTe nanoinclusions take disk shape, which is transformed from initial HgTe nuclei, although there is no lattice constant difference of the two end components at standard state. As a primary reason for the morphological transformation of the initial spherical HgTe nuclei to HgTe nanodisks, the induced lattice mismatch is suggested. On the condition that the HgTe nanodisks maintain perfect coherent nature with PbTe matrix, the stress-free lattice constant of constrained HgTe nanodisks has been calculated based on the defined concept of the strain-induced tetragonality, the linear elasticity and the actual measurement in HRTEM images.

The Warpage Phenomena of Electrolyte Layer During the Sintering Process in the Layered Planar SOFC Module (적층 평판형 SOFC 모듈에서 소결 시 전해질 층의 휨 현상)

  • Oh, Min-Wook;Gu, Sin-Il;Shin, Hyo-Soon;Yeo, Dong-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.241-246
    • /
    • 2012
  • A layered planer SOFC module was designed from planar-type SOFC. It was prepared by multi-layered ceramic technology. To form the cathode and the anode in the layered structure, reliable channels should be made on the both side of electrolyte perpendicularly. However, monolithic SOFC using multi-layered ceramic technology hasn't been studied another group, and the warpage of electrolyte in the channel, also, hasn't been studied, when electrode is printed on the electrolyte. In this study, the channels are prepared with electrode printing, and their warpage are evaluated. In the case of YSZ without electrode, the warpages are nothing in the limit of measurement using optical microscope. The warpage of 'YSZ-NiO printed' increases than that of 'NiO printed', and also, the case of 'double electrode printed' is similar to 'YSZ-NiO printed'. It is thought that, in the printed electrolyte, the warpage is related to the difference of the sintering behavior of each material.

Design of a Multi-Sensor Data Simulator and Development of Data Fusion Algorithm (다중센서자료 시뮬레이터 설계 및 자료융합 알고리듬 개발)

  • Lee, Yong-Jae;Lee, Ja-Seong;Go, Seon-Jun;Song, Jong-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.93-100
    • /
    • 2006
  • This paper presents a multi-sensor data simulator and a data fusion algorithm for tracking high dynamic flight target from Radar and Telemetry System. The designed simulator generates time-asynchronous multiple sensor data with different data rates and communication delays. Measurement noises are incorporated by using realistic sensor models. The proposed fusion algorithm is designed by a 21st order distributed Kalman Filter which is based on the PVA model with sensor bias states. A fault detection and correction logics are included in the algorithm for bad data and sensor faults. The designed algorithm is verified by using both simulation data and actual real data.

Implementation of a Sensor Fusion FPGA for an IoT System (사물인터넷 시스템을 위한 센서 융합 FPGA 구현)

  • Jung, Chang-Min;Lee, Kwang-Yeob;Park, Tae-Ryong
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.142-147
    • /
    • 2015
  • In this paper, a Kalman filter-based sensor fusion filter that measures posture by calibrating and combining information obtained from acceleration and gyro sensors was proposed. Recent advancements in sensor network technology have required sensor fusion technology. In the proposed approach, the nonlinear system model of the filter is converted to a linear system model through a Jacobian matrix operation, and the measurement value predicted via Euler integration. The proposed filter was implemented at an operating frequency of 74 MHz using a Virtex-6 FPGA Board from Xilinx Inc. Further, the accuracy and reliability of the measured posture were validated by comparing the values obtained using the implemented filters with those from existing filters.

Measurement of fast ion life time using neutron diagnostics and its application to the fast ion instability at ELM suppressed KSTAR plasma by RMP

  • Kwak, Jong-Gu;Woo, M.H.;Rhee, T.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1860-1865
    • /
    • 2019
  • The confinement degradation of the energetic particles during RMP would be a key issue in success of realizing the successful energy production using fusion plasma, because a 3.5 MeV energetic alpha particle should be able to sustain the burning plasma after the ignition. As KSTAR recent results indicate the generation of high-performance plasma(${\beta}_p{\sim}3$), the confinement of the energetic particles is also an important key aspect in neutral beam driven plasma. In general, the measured absolute value of the neutron intensity is generally used for to estimating the confinement time of energetic particles by comparing it with the theoretical value based on transport calculations. However, the availability of, but for its calculation process, many accurate diagnostic data of plasma parameters such as thermal and incident fast ion density, are essential to the calculation process. In this paper, the time evolution of the neutron signal from an He3 counter during the beam blank has permitted to facilitate the estimation of the slowing down time of energetic particles and the method is applied to investigate the fast ion effect on ELM suppressed KSTAR plasma which is heated by high energy deuterium neutral beams.

Target alignment method of inertial confinement fusion facility based on position estimation

  • Lin, Weiheng;Zhu, Jianqiang;Liu, Zhigang;Pang, Xiangyang;Zhou, Yang;Cui, Wenhui;Dong, Ziming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3703-3716
    • /
    • 2022
  • Target alignment technology is one of the most critical technologies in laser fusion experiments and is an important technology related to the success of laser fusion experiments. In this study, by combining the open-loop and closed-loop errors of the target alignment, the Kalman state observer is used to estimate the position of the target, which improves the observation precision of the target alignment. Then the optimized result is used to guide the alignment of the target. This method can greatly optimize the target alignment error and reduce uncertainty. With the improvement of the target alignment precision, it will greatly improve the reliability and repeatability of the experiments' results, thereby improving the success rate of the experiments.

A data fusion method for bridge displacement reconstruction based on LSTM networks

  • Duan, Da-You;Wang, Zuo-Cai;Sun, Xiao-Tong;Xin, Yu
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.599-616
    • /
    • 2022
  • Bridge displacement contains vital information for bridge condition and performance. Due to the limits of direct displacement measurement methods, the indirect displacement reconstruction methods based on the strain or acceleration data are also developed in engineering applications. There are still some deficiencies of the displacement reconstruction methods based on strain or acceleration in practice. This paper proposed a novel method based on long short-term memory (LSTM) networks to reconstruct the bridge dynamic displacements with the strain and acceleration data source. The LSTM networks with three hidden layers are utilized to map the relationships between the measured responses and the bridge displacement. To achieve the data fusion, the input strain and acceleration data need to be preprocessed by normalization and then the corresponding dynamic displacement responses can be reconstructed by the LSTM networks. In the numerical simulation, the errors of the displacement reconstruction are below 9% for different load cases, and the proposed method is robust when the input strain and acceleration data contains additive noise. The hyper-parameter effect is analyzed and the displacement reconstruction accuracies of different machine learning methods are compared. For experimental verification, the errors are below 6% for the simply supported beam and continuous beam cases. Both the numerical and experimental results indicate that the proposed data fusion method can accurately reconstruct the displacement.