• Title/Summary/Keyword: measurement fusion

Search Result 368, Processing Time 0.029 seconds

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

A Study of Radon Reduction using Panel-type Activated Carbon (판재형 활성탄을 이용한 라돈 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Jun, Jae-Hoon;Yang, Seung-Woo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • Recently, building materials and air purification filters with eco-friendly charcoal are actively studying to reduce the concentration of radon gas in indoor air. In this study, radon reduction performance was assessed by designing and producing new panel-type activated carbon filter that can be handled more efficiently than conventional charcoal filters, which can reduce radon gas. For the fabrication of our panel-type activated carbon filter, first the pressed molding product after mixing activated carbon powder and polyurethane. Then, through diamond cutting, the activated carbon filter of 2 mm, 4 mm and 6 mm thickness were fabricated. To investigate the physical characteristics of the fabricated activated carbon filter, a surface area and flexural strength measurement was performed. In addition, to evaluate the reduction performance of radon gas in indoor, the radon concentration of before and after the filter passes from a constant amount of air flow using three acrylic chambers was measured, respectively. As a result, the surface area of the fabricated activated carbon was approximately $1,008m^2/g$ showing similar value to conventional products. Also, the flexural load was found to have three times higher value than the gypsum board with 435 N. Finally, the radon reduction efficiency from indoor gas improved as the thickness of the activated carbon increases, resulting in an excellent radon removal rate of more than 90 % in the 6 mm thick filter. From the experimental results, the panel-type activated carbon is considered to be available as an eco-friendly building material to reduce radon gas in an enclosed indoor environment.

The Effects of Image Quality due to Scattering X-ray according to increasing Patient Thickness (피사체 두께에 따른 산란선 발생이 화질에 미치는 영향)

  • Park, Ji-Koon;Yang, Sung-Woo;Jun, Jae-Hoon;Cho, Su-Yeon;Kim, Kyo-Tae;Heo, Ye-Ji;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.671-677
    • /
    • 2017
  • In this study, scattering factors affecting the quality of medical images were quantitatively analyzed and investigated. MCNPX simulation was conducted by using ANSI phantom, made of tissue equivalent materials, to calculate the scattering ratio occurred by the increase of the object thickness. Then, the result of the simulation was compared with the result of actual radiation measurement. In addition, we evaluated the image quality by the RMS evaluation, RSD and NPS analysis using X-ray images acquired with increasing object thickness. Furthermore, the scattering ratio was analyzed by increasing the thickness of acrylic phantom on chest phantom. The result showed that the scattering ratio was increased to 57.2%, 62.4%, and 66.8% from 48.9%, respectively, when the acrylic phantom thickness was increased by 1 inch from 6.1 inches. The results of MCNPX simulation and the actual measured scattering dose showed similar results. Also, as a result of RMS measurement from acquired x-ray images, the standard deviation decreased as the object thickness increased. However, in the RSD analysis considering the average incident dose, the results were increased from 0.028 to 0.039, 0.051, 0.062 as the acrylic phantom thickness was increased from 6.1 inches to 7.1 inch, 8.1 inch, and 9.1 inch, respectively. It can be seen that the increase of the scattering effect due to the increase of the object thickness reduces the SNR. Also, the NPS results obtained by measuring scattered radiation incident on the detector resulted in the increase of the noise as the object thickness increased.

Comparative Study on Monetary Estimates of the Preservation Value of Recreational Forests through Contingent Valuation Methods (자연휴양림 보존가치 측정을 위한 조건부가치측정법(CVM) 추정액 비교)

  • Kang, Kee-Rae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.2
    • /
    • pp.25-36
    • /
    • 2010
  • The generally known important functions of forests include air purification and the health benefits that humans can receive when relaxing and enjoying recreation in the forests. In recent years, people have appreciated the value of the natural environment but it is not easy to answer the question how much monetary value a natural environment has. Because environmental property is public property, which is not traded on the market, market prices cannot be established, so it is not easy to assess the currency value. Methods for estimating environmental property value have been studied by economists. The representative method for measuring environmental property value is a contingent valuation method, or CVM. Various methods have been researched and attempted along with the development and fusion of mathematics, statistics, and economics. Representative methods of CVM are single-bound and double-bound logit and probit methods. This study has been carried out to compare four estimates. Estimates are as follows: the lowest estimate is derived from a single-bound logit WTPmedian while the highest estimate is from double-bound probit WTPmean. While there are some preceding studies on price estimation and methods of measurement through CVM, they offer only partial comparisons. This study suggests four analytic methods and prices through 1,123 questionnaires. The results can be used for the subsequent comparison of estimate prices and the methods of measurement

Seasonal Variations of Direct Solar Irradiance with Ground and Air Atmospheric Data Fusion for Peninsular Type Coastal Area (지상 및 고도별 대기측정 자료 융합을 이용한 반도형 해안지역의 직달일사량 계절 변화 연구)

  • Choi, Ji Nyeong;Lee, Sanghee;Seong, Sehyun;Ahn, Ki-Beom;Kim, Sug-Whan;Kim, Jinho;Park, Sanghyun;Jang, Sukwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.411-423
    • /
    • 2020
  • Localized solar irradiance is normally derived from atmospheric transmission influenced by atmospheric composition and conditions of the target area. Specially, for the area with complex coastal lines such as Taean gun, the accurate estimation of solar irradiance requires for in depth analysis of atmospheric transmission characteristics based on the localized vertical profiles of the key atmospheric parameters. Using MODTRAN (MODerate resolution atmospheric TRANsmission) 6, we report a computational study on clear day atmospheric transmission and direct solar irradiance estimation of Taean gun using the data collected from 3 ground stations and radiosonde measurement over 93 clear days in 2018. The MODTRAN estimated direct solar irradiance is compared with the measurement. The results show that the normalized residual mean (NRM) is 0.28 for the temperature based MODTRAN atmospheric model and 0.32 for the pressure based MODTRAN atmospheric model. These values are larger than 0.1~0.2 of the other study and we understand that such difference represents the local atmospheric characteristics of Taean gun. The results also show that NRM tends to increase noticeably in summer as the temperature increases. Such findings from this study can be very useful for estimation and prediction of the atmospheric condition of the local area with complex coastal lines.

Analysis of Change Rate of SBP and DBP Estimation Fusion Algorithm According to PTT Measurement change PPG Pulse Wave Analysis (PPG 맥파 분석의 PTT 측정변화에 따른 SBP, DBP 추정 융합 알고리즘 변화율 분석)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.35-40
    • /
    • 2020
  • Recently, devices such as smart watches capable of measuring small biosignals have been released. Body composition, blood pressure, heart rate, and oxygen saturation can be easily obtained. However, the part that is not trusted by the user is accuracy. These biosignals are sensitive to the external environment and have large fluctuations depending on the conditions inside the subject's body. Blood pressure measurements, in particular, still give different results, depending on how the conditions in the body are handled. Therefore, in this study, PPG was analyzed to measure PTT at two points of 80% and 100%, the highest in PTT measurement. The effect of the measured value on SBP and DBP was analyzed and a method was proposed to increase the accuracy. As a result of the study, the measured value of PTT at 80% of the peak PPG is more effective in estimating blood pressure of SBP and DBP than the value measured at 100%. In the regression analysis of the rate of change blood pressure estimation, the coefficient of determination of SBP (80%) was 0.6946, and DBP (100%) was 0.547.

A Study of Urinary Ascorbic Acid as a Noninvasive Biomarker for Cadmium-Intoxication in Rats (카드뮴 중독 흰쥐에 대한 Noninvasive Biomarker로서의 요중 Ascorbic Acid에 관한 연구)

  • 안승주;김용호;류재두;이용우
    • Biomedical Science Letters
    • /
    • v.3 no.2
    • /
    • pp.151-160
    • /
    • 1997
  • This study was planned to evaluate the urinary ascorbic acid as a new biological marker for the intoxication of cadmium, which could possibly be driven by its increased utilization and environmental pollution. In order to meet this goal, we have peformed measurement of urinary ascorbic acid concentration, histopathological examination of the kidney, and biochemical test for the liver function using cadmium-intoxicated rats by oral administration. The average concentrations of urinary ascorbic acid in the $CdCl_2$-treated rats were 214.0 mg/dl for 100 ppm group and 254.3 mg/dl for 200 ppm group during experimental period of 50 days. These levels are 24 and 28 times higher than one in the control group (9.0 mg/dl), respectively. Ultrastructural study showed the eosinophilic hyaline cast and focal effacement, fusion in the renal tubules, as well as loss of foot processes on the glomerular epithelial cells. These results suggested that cadmium may be responsible for renal glomerular injury. The blood levels of AST, ALT and LDH in the treated groups (199 IU/I, 88 IU/I, 1190 U/I for the 100 ppm group and 270 IU/I, 226 IU/I, 760 U/I for the 200 ppm group) were higher than ones in the control group(143 IU/I, 50 IU/I, 334 U/I). These results indicated the cadmium induced the damage of liver function. In conclusion, the administration of cadmium showed a remarkable increase of urinary ascorbic acid with renal and hepatic damage. Therefore, it is expected that measurement of urinary ascorbic acid would be an powerful method as a noninvasive biomarker for cadmium intoxication.

  • PDF

Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter (복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구)

  • Song, Jeonggyu;Jeong, Junho;Yang, Seungwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2018
  • This paper proposes Kalman Filter-based relative navigation algorithms for proximity tasks such as rendezvous/docking/cluster-operation of spacecraft using PSD Sensors and Infrared Beacon Modules. Numerical simulations are performed for comparative analysis of the performance of each relative-navigation technique. Based on the operation principle and optical modeling of the PSD Sensor and the Infrared Beacon Module used in the relative navigation algorithm, a measurement model for the Kalman filter is constructed. The Extended Kalman Filter(EKF) and the Unscented Kalman Filter(UKF) are used as probabilistic relative navigation based on measurement fusion to utilize kinematics and dynamics information on translational and rotation motions of satellites. Relative position and relative attitude estimation performance of two filters is compared. Especially, through the simulation of various scenarios, performance changes are also investigated depending on the number of PSD Sensors and IR Beacons in target and chaser satellites.

A Study on the Measurement of Technological Impact using Citation Analysis of Patent Information (특허정보분석을 이용한 기술파급효과 측정에 관한 연구)

  • Yoo, Sun-Hi;Lee, Yong-Ho;Won, Dong-Kyu
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.4
    • /
    • pp.687-705
    • /
    • 2007
  • Nowadays it is more important to measure the technological impact of a concerned R&D technology on others, when deciding or selecting strategically, under the environment such as more complex, more uncertain and more costly. But there was very few of proper methods to measure quantitatively. So we studied on measuring the technological impact of one group of technologies on others, which means the flow of disembodied knowledge, using patent citation analysis. We reviewed the prior art of the measurement of technological impact, and designs the effective citation analysis method using patent information, analyzing the prior art of patent citation analysis method and ie index. Finally, we developed the disembodied knowledge flow matrix between technology groups, counting citation frequencies between them, using KISTI's US patent database(USPA) and the index to represent the technological impact to others using the developed matrix as well as the intrinsic nature of the technological groups clustering by network analysis. The results of this study is to present the insight of a technological impact on the others quantitatively and this study aims at using them to refer to R&D budgeting and decision making in case of R&D planning or to the basic information to understand technology conversion or fusion.

  • PDF

A Comparative Study of Branching Ratio of 167Yb Radioactive Isotope from Gamma-ray Spectrum Produced by 169Tm(p,3n)167Yb Reaction with 100-MeV Proton Beam (100-MeV 양성자 빔을 이용하여 169Tm(p,3n)167Yb 반응에 의해 생성된 167Yb 방사성동위원소에서 방출되는 감마선 스펙트럼 비교 연구)

  • Sam-Yol, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.953-960
    • /
    • 2022
  • The measurement of branching ratio of 167Yb radioactive isotopes from gamma-ray spectrum of 169Tm(p,3n)167Yb reaction were performed by using a 100-MeV proton linear accelerator of the Korea Multi-purpose Accelerator Complex (KOMAC). The 167Yb isotope has a half-life of 17.5 minutes and decays to 169Tm. The gamma rays generated from the 167Yb isotope were measured using an HPGe detector gamma ray spectroscopy system. The energy calibration of the detector and the efficiency measurement of the detector were determined using a standard source. The gamma rays of known main energy (62.9, 106.2, 113.3, 143.5 and 176.3 keV) were measured. On the other hand, information about the intensity of the generated gamma rays is very inaccurate. Therefore, in this study, the decay strength of the main gamma rays was accurately measured. Overall, it was different from the previously known results, and in particular, it was found that the intensity of the main decay gamma ray, such as the 113.3 and 106.2 keV gamma ray, was overestimated, and it was found that the gamma ray, such as 62.9, 116.7 and 143.5 keV was underestimated. The present results are considered to be important information in the fields of nuclear fusion, astrophysics and nuclear physics in the future.