• Title/Summary/Keyword: measurement feedback

Search Result 466, Processing Time 0.026 seconds

Displacement Sensorless Active Magnetic Bearing Control by Current Measurement (전류신호를 이용한 능동 자기 베어링계의 제어)

  • 권계시;정호섭;이종원
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.49-57
    • /
    • 1995
  • An electronic circuit device is developed such that the displacement between an electromagnet and a moving target can be estimated from the coil current measurement, and then applied to an active magnetic bearing system. In order to levitate the shaft without using displacement sensor the stable control gains are obtained from the linearized model which includes the gap estimation circuit. Experimental results show that the shaft, by the estimated gap feedback, can be levitated within $\pm$6 ${\mu}m$ positioning error.

  • PDF

Admittance Model-Based Nanodynamic Control of Diamond Turnning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 극초정밀 제어)

  • 정상화;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.49-52
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining processprohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normalto the face of the workpice can be filterd through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment cotnrol action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. Based on the empirical data of the cutting dynamics, simulation results are shown.

  • PDF

Generation of n Precision Magnetic Filed Using Electromagnet and NMR Magnetometer (전자석과 핵자기공명 자장측정기를 이용한 정밀자장의 발생)

  • Kim, Young-Gyun;Park, Po-Gyu;Park, Jeong-Kwon
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.137-142
    • /
    • 2002
  • A precision magnetic field was generated by the NMR magnetometer and electromagnet system. The current and field feedback systems are used to control of magnetic field in the electromagnet using computer. Stability of magnetic field according to results that compare field and current feedback, current method is better than 2 times. The stability of magnetic field with current feedback improved 10 times compared with no feedback. This system is used for the calibration of magnetometers and the testing related to magnetic fields.

Effects of Visual Feedback Short Foot Exercise on Foot Pressure in Adults with Flexible Flat Foot

  • Jeong, Dawoon
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.4
    • /
    • pp.1934-1939
    • /
    • 2019
  • Background: Flexible flat foot is that the medial longitudinal arch collapses in weight bearing and returns normal arch when weight is removed and the weight bearing shifts toward medial part of the foot, which can cause pathological problems in the alignment of the lower extremities and the entire body. Objective: To compare the foot pressure for adults with flexible flat foot. Design: Quasi-Experimental Study Methods: 24 participants with flexible flat foot were recruited and were randomly divided into Visual feedback Short Foot Exercise (VSFE) group and Short Foot Exercise (SFE) group. To compare changes of foot pressure about pre and post intervention, the contact pressure measurement was conducted. Results: In the VSFE, significant differences were observed for the foot pressure of the 1st toe, 1st, 3rd and 4-5th metatarsal, midfoot, medial and lateral heel (p<.05). The foot pressure of the 3rd and 4-5th metatarsal, midfoot showed significant differences in the SFE (p<.05). The contact pressure of the 1st toe, 3rd metatarsal showed significant differences between the groups. Conclusions: Visual feedback short foot exercise can be useful for moving the pressure from medial to lateral part, and can prevent possible pathological problems.

Influence of Nasometer Structure on Nasalance for Speech Therapy (언어치료환자를 위한 비음측정기 모듈의 구조가 비음치 산출에 미치는 영향)

  • Woo, Seong Tak;Park, Y.B.;Kim, J.Y.;Oh, D.H.;Ha, J.W.;Na, S.D.;Kim, M.N.
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.157-166
    • /
    • 2019
  • With the development of medical technology, interest in rehabilitation devices is increasing and various devices are being studied. In particular, devices for speech disorders such as hearing impairment and cleft palate are attracting attention. In general, the nasometer is used for patients with flaccid dysarthria and velopharyngeal incompetence(VPI). However, in the case of the conventional separator type nasometer, that has an acoustic feedback problem between the oral and nasal sounds. In recent, the mask type nasometer has been developed which is insensitive to acoustic feedback. But, still not popularized. In this paper, the nasometer characteristics of the conventional separation type and mask type are analyzed. Also, We were obtained clinical acoustic data from the 6 subjects and examined the significant differences in the structure of the separation type and mask type nasometer. Through experiments, it was confirmed that the measurement was about 3~15% higher in the mask type nasometer than the conventional nasometer having a separator type. Also, We was considered the necessity of nasometer signal processing for acoustic feedback reduction and nasalance calculation optimization.

Constraints on cosmology and baryonic feedback by the combined analysis of weak lensing and galaxy clustering with the Deep Lens Survey

  • Yoon, Mijin;Jee, M. James;Tyson, Tony
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.41.1-41.1
    • /
    • 2018
  • We constrain cosmological parameters by combining three different power spectra measured from galaxy clustering, galaxy-galaxy lensing, and cosmic shear using the Deep Lens Survey (DLS). Two lens bins (centered at z~0.27 and 0.54) and two source bins (centered at z~0.64, and 1.1) containing more than one million galaxies are selected to measure the power spectra. We re-calibrate the initial photo-z estimation of the lens bins by matching with SHELS and PRIMUS and confirm its fidelity by measuring a cross-correlation between the bins. We also check the reliability of the lensing signals through the null tests, lens-source flipping and cross shear measurement. Residual systematic errors from photometric redshift and shear calibration uncertainties are marginalized over in the nested sampling during our parameter constraint process. For the flat LCDM model, we determine S_8=sigma_8(Omega_m/0.3)^0.5=0.832+-0.028, which is in great agreement with the Planck data. We also verify that the two independent constraints from the cosmic shear and the galaxy clustering+galaxy-galaxy lensing measurements are consistent with each other. To address baryonic feedback effects on small scales, we marginalize over a baryonic feedback parameter, which we are able to constrain with the DLS data alone and more tightly when combined with Planck data. The constrained value hints at the possibility that the AGN feedback in the current OWLS simulations might not be strong enough.

  • PDF

The Joint analysis of galaxy clustering and weak lensing from the Deep Lens Survey to constrain cosmology and baryonic feedback

  • Yoon, Mijin;Jee, M. James;Tyson, J. Tony
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.79.2-79.2
    • /
    • 2019
  • Based on three types of 2-point statistics (galaxy clustering, galaxy-galaxy lensing, and cosmic shear power spectra) from the Deep Lens Survey (DLS), we constrain cosmology and baryonic feedback. The DLS is a deep survey, so-called a precursor to LSST, reaching down to ~27th magnitude in BVRz' over 20 deg2. To measure the three power spectra, we choose two lens galaxy populations centered at z ~0.27 and 0.54 and two source galaxy populations centered at z ~0.64 and 1.1, with more than 1 million galaxies. We perform a number of consistency tests to confirm the reliability of the measurements. We calibrated photo-z estimation of the lens galaxies and validated the result with galaxy cross-correlation measurement. The B-mode signals, indicative of potential systematics, are found to be consistent with zero. The two cosmological results independently obtained from the cosmic shear and the galaxy clustering + galaxy-galaxy lensing measurements agree well with each other. Also, we verify that cosmological results between bright and faint sources are consistent. While there exist some weak lensing surveys showing a tension with Planck, the DLS constraint on S8 agrees nicely with the Planck result. Using the HMcode approach derived from the OWLS simulation, we constrain the strength of baryonic feedback. The DLS results hint at the possibility that the actual AGN feedback may be stronger than the one implemented in the current state-of-the-art simulations.

  • PDF

Effects of real-time feedback training on weight shifting during golf swinging on golf performance in amateur golfers

  • Hwang, Ji-Hyun;Choi, Ho-Suk;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.4
    • /
    • pp.189-195
    • /
    • 2017
  • Objective: The purpose of this study was to examine the effects of real-time visual feedback weight shift training during golf swinging on golf performance. Design: Repeated-measures crossover design. Methods: Twenty-sixth amateur golfers were enrolled and randomly divided into two groups: The golf swing training with real-time feedback on weight shift (experimental group) swing training on the Wii balance board (WBB) by viewing the center of pressure (COP) trajectory on the WBB. All participants were assigned to the experimental group and the control group. The general golf swing training group (control group) performed on the ground. The golf performance was measured using a high-speed 3-dimensional camera sensor which analyses the shot distance, ball velocity, vertical launch angle, horizontal launch angle, back spin velocity and side spin velocity. The COP trajectory was assessed during 10 practice sessions and the mean was used. The golf performance measurement was repeated three times and its mean value was used. The assessment and training were performed at 24-hour intervals. Results: After training sessions, the change in shot distance, ball velocity, and horizontal launch angle pre- and post-training were significantly different when using the driver and iron clubs in the experimental group (p<0.05). The interaction time${\times}$group and time${\times}$club were not significant for all variables. Conclusions: In this study, real-time feedback training using real-time feedback on weight shifting improves golf shot distance and accuracy, which will be effective in increasing golf performance. In addition, it can be used as an index for golf player ability.

A Continuous Fine-Tuning Phase Locked Loop with Additional Negative Feedback Loop (추가적인 부궤환 루프를 가지는 연속 미세 조절 위상 고정루프)

  • Choi, Young-Shig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.811-818
    • /
    • 2016
  • A continuous fine-tuning phase locked loop with an additional negative feedback loop has been proposed. When the phase locked loop is out-of-lock, the phase locked loop has a fast locking characteristic using the continuous band-selection loop. When the phase locked loop is near in-lock, the bandwidth is narrowed with the fine loop. The additional negative feedback loop consists of a voltage controlled oscillator, a frequency voltage converter and its internal loop filter. It serves a negative feedback function to the main phase locked loop, and improves the phase noise characteristics and the stability of the proposed phase locked loop. The additional negative feedback loop makes the continuous fine-tuning loop work stably without any voltage fluctuation in the loop filter. Measurement results of the fabricated phase locked loop in $0.18{\mu}m$ CMOS process show that the phase noise is -109.6dBc/Hz at 2MHz offset from 742.8MHz carrier frequency.

Effects of Spinal Stabilization Exercises Using Visual Feedback on Gross Motor Function and Balance in Children with Cerebral Palsy

  • Kim, So Hee;Kim, Tae Ho;Hwang, Hyun Chul
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.5
    • /
    • pp.279-285
    • /
    • 2019
  • Purpose: This study examined the effects of spinal stabilization exercises using visual feedback on the gross motor function and balance of the sitting posture in children with cerebral palsy. Methods: The subjects were 18 children with cerebral palsy aged 8-15 years in the I-III stages of the Gross Motor Function Classification System. The subjects were divided into an experimental group (n=9) and control group (n=9). The experimental group was treated with 30 minutes of neurodevelopmental treatment and 20 minutes of spinal stabilization exercises using visual feedback. The control group was treated with 30 minutes of neurodevelopmental treatment and 20 minutes of spinal stabilization exercises without visual feedback. Both groups participated in the experiment twice a week for eight weeks. The Gross Motor Function Measurement was performed to evaluate the changes between pre- and the post-intervention in gross motor function. The Seated Limit of Stability Surface Area was measured to evaluate the changes in trunk balance. Results: Both experimental and control groups showed a significant increase in the gross motor function and trunk balance (p<0.05). The experimental group showed a significant increase in gross motor function compared to the control group (p<0.05). The experimental group showed a significant increase in the dynamic trunk balance in all directions when measuring the Seated Limit of Stability Surface Area (p<0.05). Conclusion: Spinal stabilization exercises using visual feedback for the neurodevelopmental treatment of children with cerebral palsy can improve their gross motor function and trunk balance when in a sitting posture more effectively.